1 Ohama N, Sato H, Shinozaki K, Yamaguchishinozaki K. Transcriptional regulatory network of plant heat stress response [J]. Trends Plant Sci, 2017, 22 (1): 53 2 Guo M, Liu JH, Ma X, Luo DX, Gong ZH. The plant Heat Stress Transcription Factors (HSFs): structure, regulation, and function in response to abiotic stresses [J]. Front Plant Sci, 2016, 7 (273): 114 3 Scharf KD, Rose S, Zott W. Three tomato genes code for heat as transcription factors wim a region of remarkable homology to the DNA-binding domain of the yeast Hsf [J]. EMBo, 1990, 9 (13): 4495 4 Li PS, Yu TF, He GH, Chen?M, Zhou?YB. Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses [J]. BMC Genomics, 2014, 15 (1): 1009 5 Zhu X, Huang C, Zhang L. Systematic analysis of Hsf family genes in the Brassica napus genome reveals novel responses to heat, drought and high CO2 stresses [J]. Front Plant Sci, 2017, 8 (1): 1174 6 Scharf KD, Berberich T, Ebersberger I. The plant heat stress transcription factor (Hsf) family: structure, function and evolution [J]. Biochim Biophy Acta, 2012, 1819 (2): 104-119 7 Prasinos C, Krampis K, Samakovli D, Hatzopoulos P. Tight regulation of expression of two Arabidopsis cytosolic Hsp90 genes during embryo development [J]. J Exper Bot, 2005, 56 (412): 633 8 Swindell WR, Huebner M, Weber AP. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways [J]. BMC Genomics, 2007, 8 (1): 125 9 Hu W, Hu G, Han B. Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice [J]. Plant Sci, 2009, 176 (4): 583-90 10 Giorno F, Wolters-Arts M, Grillo S, Scharf KD, Vriezenand WH, Mariani C. Developmental and heat stress regulated expression of HsfA2 and small heat shock proteins in tomato anthers [J]. J Exp Bot, 2010, 61 (2): 453-462 11 Rahmati IM, Brown E, Weigand C, Tillett RL, Schlauch KA, Scharf KD. A comparison of heat-stress transcription changes between wild-type Arabidopsis pollen and a heat-sensitive mutant harboring a knockout of cyclic nucleotide-gated cation channel 16 (cngc16) [J]. BMC Genomics, 2018, 19: 549 12 张国俊, 王婷婷, 胡利宗, 李书粉, 高武军. 苹果Hsf家族成员的序列特征、表达与进化分析[J]. 华北农学报, 2017, 32 (2): 71-80 [Zhang GJ, Wang TT, Hu LZ, Li SF, Gao WJ. Sequence characterization, expression and evolution analysis of apple Hsf family members [J]. J North Chin Agric Univ, 2017, 32 (2): 71-80] 13 Zhang J, Liu B, Li J. Hsf and Hsp gene families in Populus: genome-wide identification, organization and correlated expression during development and in stress responses [J]. BMC Genom, 2015, 16 (1): 181 14 齐文娥, 陈厚彬, 彭朵芬. 中国龙眼产业发展现状、问题与对策建议[J]. 广东农业科学, 2016, 43 (8): 169-174 [Qi WY, Chen HB, Peng DF. Development status, problems and countermeasures of Longan industry in China [J]. Guangdong Agric Sci, 2016, 43 (8): 169-174] 15 Stief A, Altmann S, Hoffmann K. Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors [J]. Plant Cell, 2014, 26 (4): 1792 16 Lin Y, Min J, Lai R. Genome-wide sequencing of longan (Dimocarpus longan Lour.) provides insights into molecular basis of its polyphenol-rich characteristics [J]. Gigascience, 2017, 6 (5): 1-14 17 赖钟雄. 龙眼生物技术研究[M]. 福州: 福建科学技术出版社, 2003 [Lai ZX. Longan biotechnology research [M]. Fuzhou: Fujian Sci-Tech Press, 2003] 18 田奇琳. 龙眼胚性培养物DlRan3A和DlRan3B基因的功能分析[D]. 福州: 福建农林大学, 2017 [Tian QL. Functional analysis of DlRan3A and DlRan3B genes in longan embryogenic cultures [D]. Fuzhou: Fujian Agriculture and Forestry University, 2017] 19 Lin YL, Lai ZX. Reference gene selection for qPCR analysis during somatic embryogenesis in longan tree [J]. Plant Sci, 2010, 178 (4): 359-365 20 Lin Y, Lai Z. Comparative analysis reveals dynamic changes in miRNAs and their targets and expression during somatic embryogenesis in Longan (Dimocarpus longan Lour.) [J]. PLoS ONE, 2013, 8 (4): e60337 21 Lescot M, Déhais P, Thijs G. Plant CARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences [J]. Nucl Acids Res, 2002, 30 (1): 325-327 22 Gardinergarden M, Frommer M. CpG Islands in vertebrate genomes [J]. J Mol Biol, 1987, 196 (2): 261-282 23 刘爽. 菠菜热激转录因子Hsf家族全基因组分析及SoHsfA1基因功能分析[D]. 上海: 上海师范大学, 2016 [Liu S. Genome analysis of the thermotolerant transcription factor Hsf family of spinach and the functional analysis of SoHsfA1 gene [D]. Shanghai: Shanghai Normal University, 2016] 24 Bailey TL, Williams N, Misleh C. MEME: discovering and analyzing DNA and protein sequence motifs [J]. Nucl Acids Res, 2006, 34 (Web Server issue): W369 25 Guo M, Lu JP, Zhai YF. Genome-wide analysis, expression profile of heat shock factor gene family (CaHsfs) and characterisation of CaHsfA2 in pepper (Capsicum annuum L.) [J]. BMC Plant Biol, 2015, 15 (1): 151 26 Huang Y, Li MY, Wang F, Xu ZS, Huang W, Wang GL, Ma J, Xiong AS. Heat shock factors in carrot: genome-wide identification, classification and expression profiles response to abiotic stress [J]. Mol Biol Res, 2015, 42 (5): 893-905 27 Liu H, Charng Y. Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development [J]. Plant Physiol, 2013, 163 (1): 276-290 28 Lin Q, Jiang Q, Lin J. Heat shock transcription factors expression during fruit development and under hot air stress in Ponkan (Citrus reticulata Blanco cv. Ponkan) fruit [J]. Gene, 2015, 559 (2): 129 29 Hewezi T. Editorial: epigenetic regulation of plant development and stress responses [J]. Plant Cell Rep, 2017, 37 (1): 1-2 30 Banerjee A, Roychoudhury A. The gymnastics of epigenomics in rice [J]. Plant Cell Rep, 2017, 37 (1): 1-25 31 Qu AL, Ding YF, Jiang Q. Molecular mechanisms of the plant heat stress response [J]. Biochem Biophys Res Commun, 2013, 432 (2): 203-207 32 Guan Q, Lu X, Zeng H. Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis [J]. Plant J, 2013, 74 (5): 840–851 33 Jeyaraj A, Zhang X, Hou Y. Genome-wide identification of conserved and novel microRNAs in one bud and two tender leaves of tea plant (Camellia sinensis) by small RNA sequencing, microarray-based hybridization and genome survey scaffold sequences [J]. BMC Plant Biol, 2017, 17 (1): 212 34 Lin J S, Kuo CC, Yang IC. MicroRNA160 modulates plant development and heat shock protein gene expression to mediate heat tolerance in Arabidopsis [J]. Front Plant Sci, 2018, 9 (1): 68 35 Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling [J]. J Exp Bot, 2014, 65 (5): 1229 36 Zhang J, Xue B, Gai M, Song S, Jia N, Sun H. Small RNA and transcriptome sequencing reveal a potential miRNA-mediated interaction network that functions during somatic embryogenesis in Lilium pumilum DC. Fisch [J]. Front Plant Sci, 2017, 8: 566 37 Kumar V, Staden JV. New insights into plant somatic embryogenesis: an epigenetic view [J]. Acta Physiol Plant, 2017, 39 (9): 194 38 徐小萍, 陈晓慧, 吕科良, 陈旭, 林玉玲, 赖钟雄. 陈晓慧. 龙眼漆酶家族成员全基因组结构与功能分析[J]. 应用与环境生物学报, 2018, 24 (4): 1-16 [Xu XP, Chen XH, Lü KL, Chen X, Lin YL, Lai ZX, Chen XH. Genome-wide identification function analysis of the Laccase gene Family in Dimocarpus Longan Lour. [J]. Chin J Appl Environ Biol, 2018, 24 (4): 1-16]
[1]邱栋梁,刘星辉,王湘平.模拟酸雨对龙眼叶绿体的伤害效应[J].应用与环境生物学报,2002,8(02):154.
QIU Dongliang,et al..Injury effects of simulated acid rain on chloroplasts of longan leaves[J].Chinese Journal of Applied & Environmental Biology,2002,8(02):154.
[2]邱栋梁,刘星辉,郭素枝.模拟酸雨对龙眼幼果纤维素酶活性和内源激素含量的影响[J].应用与环境生物学报,2004,10(01):35.
QIU Dongliang,et al..Effects of simulated acid rain on cellulase activity and contents of endogenous hormone in young fruit of longan[J].Chinese Journal of Applied & Environmental Biology,2004,10(02):35.
[3]林玉玲,赖钟雄.龙眼胚性愈伤组织Cu/Zn-SOD分子伴侣基因CCS的克隆及其在体胚发生过程中的表达分析[J].应用与环境生物学报,2012,18(03):351.[doi:10.3724/SP.J.1145.2012.00351]
LIN Yuling,LAI Zhongxiong.Cloning of Copper Chaperone for Superoxide Dismutase Gene CCS from Embryogenic Callus of Dimocarpus longan Lour. and Its Expression Analysis During Somatic Embryogenesis[J].Chinese Journal of Applied & Environmental Biology,2012,18(02):351.[doi:10.3724/SP.J.1145.2012.00351]
[4]赖瑞联,林玉玲,赖钟雄.龙眼生长素受体基因TIR1的克隆及其与miR393互作关系[J].应用与环境生物学报,2016,22(01):95.[doi:10.3724/SP.J.1145.2015.05051]
LAI Ruilian,LIN Yuling & LAI Zhongxiong**.Cloning of auxin receptor gene TIR1 and its interaction with miR393 in Dimocarpus longan Lour.[J].Chinese Journal of Applied & Environmental Biology,2016,22(02):95.[doi:10.3724/SP.J.1145.2015.05051]
[5]陈旭,曾友竞,王嘉毅,等.龙眼miR159家族成员进化特性及时空表达[J].应用与环境生物学报,2017,23(04):602.[doi:10.3724/SP.J.1145.2017.03011]
CHEN Xu,ZENG Youjing,WANG Jiayi,et al.Effect of main grain components on the starch swelling power of Tibetan hull-less barley (Hordeum vulgare var. nudum)[J].Chinese Journal of Applied & Environmental Biology,2017,23(02):602.[doi:10.3724/SP.J.1145.2017.03011]
[6]苏立遥,黄倏祺,蒋梦琦,等.龙眼miR403及其候选靶标对外源激素的响应模式以及在龙眼体胚中的表达模式[J].应用与环境生物学报,2019,25(04):977.[doi:10.19675/j.cnki.1006-687x.2019.03058]
SU Liyao,HUANG Shuqi,JIANG Mengqi,et al.The response patterns of miR403 and its candidate targets to exogenous hormones and their expression profiles in the longan somatic embryo[J].Chinese Journal of Applied & Environmental Biology,2019,25(02):977.[doi:10.19675/j.cnki.1006-687x.2019.03058]
[7]李汉生,孙刚,陈晓慧,等.龙眼BRI1基因家族的全基因组鉴定及光照响应表达[J].应用与环境生物学报,2020,26(01):125.[doi:10.19675/j.cnki.1006-687x.2019.07053]
LI Hansheng,SUN Gang,CHEN Xiaohui,et al.Genome-wide identification and response light expression analysis of the BRI1 family in Dimocarpus longan Lour[J].Chinese Journal of Applied & Environmental Biology,2020,26(02):125.[doi:10.19675/j.cnki.1006-687x.2019.07053]
[8]刘蒲东,张舒婷,陈晓慧,等.龙眼GRF家族全基因组鉴定及表达模式[J].应用与环境生物学报,2020,26(02):236.[doi:10.19675/j.cnki.1006-687x.2019.06028]
LIU Pudong,ZHANG Shuting,CHEN Xiaohui,et al.Genomic identification and expression patterns of the longan GRF family[J].Chinese Journal of Applied & Environmental Biology,2020,26(02):236.[doi:10.19675/j.cnki.1006-687x.2019.06028]
[9]廖斌,徐小萍,李珊珊,等.苯丙氨酸和茉莉酸甲酯对龙眼胚性悬浮细胞柯里拉京积累的影响[J].应用与环境生物学报,2020,26(02):287.[doi:10.19675/j.cnki.1006-687x.2019.06001]
LIAO Bin,XU Xiaoping,LI Shanshan,et al.Effects of phenylalanine and methyl jasmonate on the growth and corilagin accumulation of embryogenic suspension cells in Dimocarpus longan Lour.[J].Chinese Journal of Applied & Environmental Biology,2020,26(02):287.[doi:10.19675/j.cnki.1006-687x.2019.06001]
[10]蒋梦琦,苏立遥,黄倏祺,等.龙眼miR156家族及其调控靶标SPL的生物信息学和表达模式[J].应用与环境生物学报,2020,26(03):558.[doi:10.19675/j.cnki.1006-687x.2019.07024]
JIANG Mengqi,SU Liyao,HUANG Shuqi,et al.Bioinformatics and expression pattern analysis of miR156 family and its regulatory target SPL in Dimocarpus longan[J].Chinese Journal of Applied & Environmental Biology,2020,26(02):558.[doi:10.19675/j.cnki.1006-687x.2019.07024]