|本期目录/Table of Contents|

[1]陈文年,吴彦,吴宁,等.高山草甸群落生物量在融雪梯度上的变化[J].应用与环境生物学报,2009,15(06):745-749.[doi:10.3724/SP.J.1145.2009.00745]
 CHEN Wennian,WU Yan,WU Ning,et al.Changes in Community Biomass along Snow-melting Gradient in Alpine Meadow[J].Chinese Journal of Applied & Environmental Biology,2009,15(06):745-749.[doi:10.3724/SP.J.1145.2009.00745]
点击复制

高山草甸群落生物量在融雪梯度上的变化()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
15卷
期数:
2009年06期
页码:
745-749
栏目:
研究论文
出版日期:
2009-12-25

文章信息/Info

Title:
Changes in Community Biomass along Snow-melting Gradient in Alpine Meadow
作者:
陈文年吴彦吴宁罗鹏
(1中国科学院成都生物研究所 生态恢复重点实验室 成都 610041)
(2内江师范学院化生系化学与生命科学学院 内江 641112)
Author(s):
CHEN WennianWU YanWU NingLUO Peng
(1ECORES Lab, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China)
(2Department of Chemistry and Life Sciences, Neijiang Normal University, Neijiang 641112, Sichuan, China)
关键词:
融雪梯度生物量土壤含水量温度日较差青藏高原
Keywords:
snowmelt gradient biomass soil water content diurnal temperature variance Qinghai-Tibetan Plateau
分类号:
Q948.15 (27)
DOI:
10.3724/SP.J.1145.2009.00745
文献标志码:
A
摘要:
在青藏高原东部的一个高山雪床,沿融雪从早到晚的顺序设置3个融雪梯度部位,并对每个梯度部位的环境因子和该部位上的地上与地下生物量进行了测量和比较. 3个梯度部位间的融雪时间、土壤含水量和温度日较差有显著不同,而土壤营养成分及pH无明显变化. 从早融部位到晚融部位,地上生物量增加,地下生物量降低,地上与地下总生物量降低,地下生物量与地上生物量的比值增大. 与晚融部位相比,早融部位的地上生物量主要集中于地上0~10 cm范围内,表明在早融部位植物地上部分有变矮的趋势;早融部位的地下生物量在土壤各深度分布相对较均一,而晚融部位地下生物量则主要集中于地下0~10 cm范围内. 雪场中各部位的土壤水分含量及地表温度差异对生物量的变化有较大的影响. 图5 表2 参33
Abstract:
In an alpine snowfield on the eastern Qinghai-Tibetan Plateau, three sites were chosen along snow-melting gradient for this study, and the environmental factors and biomass of these sites were measured and compared. The result indicated that the snow melting time, soil water content and amplitude of diurnal temperature variance at soil surface were significantly different in the three sites, while no significant differences in soil nutrient contents (total N, total P, total K, soluble N, soluble P) and pH were found. From early- to late-melting sites, aboveground biomass, total biomass and ratio of below- to aboveground biomass increased, but underground biomass decreased. Comparison with late-melting site, the aboveground biomass in early-melting site largely distributed in a range of 0~10 cm above ground, indicating that plants in the early-melting site were shorter than those in the late-melting site. Unlike the aboveground biomass, the underground biomass in the early-melting site almost distributed evenly in soil at different depths. Underground biomass in the late-melting site mainly distributed in a layer of 0~10 cm below ground. All the results suggested that the changing trend of biomass was principally affected by soil water content and diurnal soil surface temperature variance in each site. Fig 5, Tab 2, Ref 33

参考文献/References:

1 Billings WD, Bliss LC. An alpine snowbank environment and its effects on vegetation, plant development, and productivity. Ecology, 1959, 40: 388~397
2 Wijk S. Performance of Salix herbacea in an alpine snow-bed gradient. J Ecol, 1986, 74: 675~684
3 Molau U. Relationship between flowering phenology and life history strategies in tundra plants. Arct Alp Res, 1993, 25: 391~402
4 Totland ?, Alatalo JM. Effects of temperature and date of snowmelt on growth, reproduction, and flowering phenology in the Arctic/alpine herb, Ranunculus glacialis. Oecologia, 2002, 133: 168~175
5 Rixen C, Stoeckli V, Ammann W. Does Artificial snow production affect soil and vegetation of Ski Pistes? Perspect Plant Ecol, 2003, 5: 219~230
6 Rixen C, Haebetli W, Stoeckli V. Ground temperature under Ski Pistes with artificial and natural snow. Arct Antarct Alp Res, 2004, 36: 419~427
7 Taylor RV, Seastedt TR. Short- and long-term patterns of soil moisture in alpine tundra. Arct Alp Res, 1994, 26: 14~20
8 Brooks PD, Williams MW, Schmidt SK. Microbial activity under alpine snowpacks, Niwot Ridge, Colorado. Biogeochemistry, 1996, 32: 93~113
9 Lipson DA, Schadt GW, Schmidt SK. Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt. Microbial Ecol, 2002, 43: 307~314
10 Uchida M, Mo W, Nakatsubo T, Tsuchiya Y, Horikoshi T, Koizumi H. Microbial activity and litter decomposition under snow cover in a cool-temperate broad-leaved deciduous forest. Agr For Meteorol, 2005, 134: 102~109
11 Kudo G. Performance and phenology of alpine herbs along a snow-melting gradient. Ecol Res, 1992, 7: 297~304
12 Kudo G. Effect of snow-free duration on leaf-span of four alpine plant species. Can J Bot, 1992, 70: 1684~1688
13 Zhao HL (赵哈林), Zhou RL (周瑞莲), Zhao YE (赵悦耳). Advance in snow ecology study in the world, Adv Earth Sci (地球科学进展), 2004, 19 (2): 296~304
14 Wu N (吴宁), Liu ZG (刘照光). Probing into the causes of geographical pattern of subalpine vegetation on the eastern Qinghai-Tibetan Plateau. Chin J Appl Environ Biol (应用与环境生物学报), 1998, 4 (3): 290~297
15 Wu Y (吴彦). Effects of seasonal snow cover on plant community. J Mountain Res (山地学报), 2005, 23 (5): 550~556
16 Ma DL (马德隆). 松潘县志. 北京: 民族出版社, 1999. 101~148
17 Li YN (李英年). Turnover analysis of belowground biomass and its relation to meteorologic conditions in alpine meadow. Chin J Agrometeorol (中国农业气象), 1998, 19 (1): 36~42
18 Liu W (刘伟), Zhou HK (周华坤), Zhou L (周立). Biomass distribution pattern of degraded grassland in alpine meadow. Grassl China (中国草地). 2005, 27 (2): 9~15
19 Falk JH. The primary productivity of lawns in a temperate environment. J Appl Ecol, 1980. 17: 689~696
20 Wang YF (王艳芬), Wang SP (汪诗平). Influence of different stocking rates on belowground biomass in Inner Mongolia steppe. Acta Agr Sin (草地学报), 1999, 7 (3): 198~203
21 Walker MD, Ingersoll RC, Webber PJ. Effects of interannual climate variation on phenology and growth of two alpine forbs. Ecology, 1995, 76: 1067~1083
22 Guo CH (郭春华), Zhang J (张均), Wang KN (王康宁), Yixi DJ (意西多吉), Wu YJ (吴玉江), Suo LD (索朗达). Yearly dynamics of biomass and nutrient contents in alpine grassland. Chin J Grassl (中国草地学报), 2007, 29 (1): 1~5
23 Zhou HK (周华坤), Zhou L (周立), Zhao XQ (赵新全), Shen ZX (沈振西), Li YN (李英年), Zhou XM (周兴民), Yan ZL (严作良), Liu W (刘伟). Study of formation pattern of belowground biomass in Potentilla fruticosa shrub. Acta Pratacult Sin (草地学报), 2002, 11 (2): 59~65
24 Molau U. Climatic impacts on flowering, growth, and vigour in an arctic-alpine cushion plant, Diapensia lapponica, under different snow cover regimes. Ecol Bull, 1996, 45: 210~219
25 Li L (李林), Li WL (李卫林), Wang ZY (王振宇), Yao ZG (姚志国), Zhu XD (朱西德). Research on reckoned method of maximum wind speed on the eastern edge of Qinghai-Xizang Plateau. Plateau Meteorol (高原气象), 2006, 25 (6): 1028~1032
26 Fan CM (范春梅), Liao CY (廖超英), Sun CZ (孙长忠), Xu XM (许喜明), Li PY (李培玉). Effects of grazing on soil physical and chemical properties of grassland and forest floor in hilly and gully regions on the Loess Plateau. Acta Agric Bor-Occid Sin (西北农业学报), 2006, 15 (1): 24~28
27 Shi YH (石永红), Han JG (韩建国). Effects of dairy cows grazing on soil physical and chemical properties of alfalfa-grass pasture in agro-pastural transitional zone of north China. Chin J Grassl (中国草地学报), 2007, 29 (1): 24~30
28 Molau U, Nordenhäll U, Eriksen B. Onset of flowering and climate variability in an alpine landscape: A 10-year study from Swedish Lapland. Am J Bot, 2005, 92: 422~431
29 Lorenzo M, Michele S, Sebastian K, Johannes I, Angelo P. Effects of local factors on plant species richness and composition of alpine meadows. Agric Ecosyst & Environ, 2007, 119: 281~288
30 Walker MD, Walker DA, Welker JM, Arft AM, Bardsley T, Brooks PD, Fahnestock JT, Jones MH, Losleben M, Parsons AN, Seastedt TR, Turner PL. Long-term experimental manipulation of winter snow regime and summer temperature in arctic and alpine tundra. Hydrol Proc, 1999, 13: 2315~2330
31 Litaor MI, Seastedt TR, Walker DA. Spatial analysis of selected soil attributes across an alpine topographic/snow gradient. Landscape Ecol, 2002, 17: 71~85
32 Stanton ML, Rejmánek M, Galen C. Change in vegetation and soil fertility along a predictable snowmelt gradient in the Mosquito Range, Colorado, USA. Arctic & Alpine Res, 1994, 26: 364~374
33 Whetton PH, Haylock MR, Galloway R. Climate change and snow-cover duration in the Australian Alps. Climatic Change, 1996, 32: 447~479

相似文献/References:

[1]任海,彭少麟,余作岳,等.鹤山针叶混交林的光能利用效率[J].应用与环境生物学报,1996,2(01):15.
 Ran Hai,Peng Shaolin,Yu Zuoyue,et al.EFFICIENCY OF SOLAR RADIATION UTILIZATION BY CONIFEROUS MIXED FOREST IN HESHAN[J].Chinese Journal of Applied & Environmental Biology,1996,2(06):15.
[2]唐景春,KATAYAMA,Arata.醌类图谱分析在环境微生物生态测定中的应用[J].应用与环境生物学报,2004,10(04):530.
 TANG Jingchun,et al..Application of quinone profile analysis for the characterization of microbial ecology in environment[J].Chinese Journal of Applied & Environmental Biology,2004,10(06):530.
[3]田耀华,冯玉龙.微生物研究在土壤质量评估中的应用[J].应用与环境生物学报,2008,14(01):132.
 TIAN Yaohua,et al..Application of Microbial Research in Evaluation of Soil Quality[J].Chinese Journal of Applied & Environmental Biology,2008,14(06):132.
[4]邓宇,华兆哲,** 赵志军,等.氮源对枯草芽孢杆菌WSHDZ-01合成过氧化氢酶的影响[J].应用与环境生物学报,2008,14(04):544.
[5]包维楷,雷波.青藏高原东部原始云杉林及其系列采伐迹地3个林地藓类种群结构与生物量的差异性评估[英][J].应用与环境生物学报,2009,15(01):8.[doi:10.3724/SP.J.1145.2009.00008]
 BAO Weikai,LEI Bo.Evaluating the Changes in Structure and Biomass of Three Common Forest-floor Mosses in Cutovers and Primary Spruce Forest in the Eastern Tibetan Plateau[J].Chinese Journal of Applied & Environmental Biology,2009,15(06):8.[doi:10.3724/SP.J.1145.2009.00008]
[6]胡建利,杨万勤,张健,等.川西亚高山冷杉和白桦细根生物量与碳储量特征[J].应用与环境生物学报,2009,15(03):313.[doi:10.3724/SP.J.1145.2009.00313]
 HU Jianli,YANG Wanqin,ZHANG Jian,et al.Characteristics of Biomass and Carbon Stock of Fir and Birch Fine Roots in Subalpine Forest of Western Sichuan, China[J].Chinese Journal of Applied & Environmental Biology,2009,15(06):313.[doi:10.3724/SP.J.1145.2009.00313]
[7]程煜,洪伟,吴承祯,等.木荷地上部分生物量分布特征与生产力[J].应用与环境生物学报,2009,15(03):318.[doi:10.3724/SP.J.1145.2009.00318]
 CHENG Yu,HONG Wei,WU Chengzhen,et al.Distribution Characters of Schima superba Aboveground Biomass and Its Produdtivity[J].Chinese Journal of Applied & Environmental Biology,2009,15(06):318.[doi:10.3724/SP.J.1145.2009.00318]
[8]孙育平,王晓辉,胡韧,等.南亚热带高产渔业水库——显岗水库敞水区浮游植物群落结构的季节变化特征[J].应用与环境生物学报,2010,16(02):228.[doi:10.3724/SP.J.1145.2010.00228]
 SUN Yuping,WANG Xiaohui,HU Ren,et al.Seasonal Variation of Phytoplankton Communities in Xiangang Reservoir, a Tropical Shallow and High-yield Fishery Reservoir in South China[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):228.[doi:10.3724/SP.J.1145.2010.00228]
[9]张伟东,汪思龙,杨会侠,等.树种和凋落物对杉木林土壤微生物性质的影响[J].应用与环境生物学报,2010,16(02):168.[doi:10.3724/SP.J.1145.2010.00168]
 ZHANG Weidong,WANG Silong,YANG Huixia,et al.Effects of Broad-leaved Trees and Litter on Productivity and Soil Microbes of Chinese Fir Plantation[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):168.[doi:10.3724/SP.J.1145.2010.00168]
[10]张涛,庄平,章龙珍,等.长江口近岸鱼类种类组成及其多样性[J].应用与环境生物学报,2010,16(06):817.[doi:10.3724/SP.J.1145.2010.00817]
 ZHANG Tao,ZHUANG Ping,ZHANG Longzhen,et al.Composition and Diversity of Fish Species in the Coast of the Yangtze River Estuary[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):817.[doi:10.3724/SP.J.1145.2010.00817]

备注/Memo

备注/Memo:
国家自然科学基金项目(Nos. 40671181, 30870396)、中国科学院知识创新项目(Nos. KZCX2-YW-418, KZCX2-XB2-02)和国家科技攻关项目(Nos. 2006BAC01A15, 2006BAC01A11)资助 Supported by the National Natural Science Foundation of China (Nos. 40671181, 30870396), the Knowledge Innovation Program of the Chinese Academy of Sciences (Nos. KZCX2-YW-418, KZCX2-XB2-02), and the National Key Sci & Tech Program of China (Nos. 2006BAC01A15, 2006BAC01A11)
更新日期/Last Update: 2009-12-23