|本期目录/Table of Contents|

[1]李世朋,蔡祖聪,杨浩.不同植被下红壤性质对细菌碳源利用的影响[J].应用与环境生物学报,2008,14(06):793-797.[doi:10.3724/SP.J.1145.2008.00793]
 LI Shipeng**,CAI Zucong & YANG Hao.Effect of Red Soil Properties under Different Vegetation Types on Bacterial Carbon Source Utilization[J].Chinese Journal of Applied & Environmental Biology,2008,14(06):793-797.[doi:10.3724/SP.J.1145.2008.00793]
点击复制

不同植被下红壤性质对细菌碳源利用的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
14卷
期数:
2008年06期
页码:
793-797
栏目:
研究论文
出版日期:
2008-12-25

文章信息/Info

Title:
Effect of Red Soil Properties under Different Vegetation Types on Bacterial Carbon Source Utilization
文章编号:
4787
作者:
李世朋蔡祖聪杨浩
(中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室 南京 210008)
Author(s):
LI Shipeng** CAI Zucong & YANG Hao
(State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China)
关键词:
BIOLOG红壤土壤性质细菌碳源利用
Keywords:
BIOLOG red soil soil property bacterium carbon source utilization
分类号:
S714.3
DOI:
10.3724/SP.J.1145.2008.00793
文献标志码:
A
摘要:
选取中国科学院红壤生态实验站的8种植被,用BIOLOG法检测了土壤细菌群落的碳源利用,并分析了16种土壤性质,利用主成分分析与回归分析方法研究了土壤性质对细菌群落碳源利用的影响. 结果表明,7项土壤性质解释了细菌碳源利用总变异的54.9%,其中,土壤溶解性有机质碳氮比解释了14.3%,砂粘比、微生物碳氮比和溶解性有机碳解释了22.6%,水解氮和微生物氮解释了12.3%,速效钾解释了5.7%,表明红壤不同植被下细菌群落碳源利用受土壤性质的影响很大. 表5参25
Abstract:
Soil samples under eight vegetation types were collected from the Red Earth Ecosystem Experimental Station to investigate the effect of soil properties on bacterial carbon source utilization using BIOLOG GN plate. The relationships between sixteen soil properties and bacterial carbon source utilization were established by using principle component analysis and regression analysis. The results showed that 54.9% of the variation in bacterial carbon source utilization was explained by seven soil properties, among which the ratio of dissolved organic carbon to nitrogen explained 14.3%, the ratio of sand to clay, microbial biomass carbon to nitrogen, and dissolved organic carbon explained 22.6%, hydrolysable nitrogen and microbial biomass nitrogen explained 12.3%, and available potassium explained 5.7% of the variation in bacterial carbon source utilization respectively, suggesting the variation in soil properties had great effect on bacterial carbon source utilization in red soil. Tab 5, Ref 25

参考文献/References:

1 Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT. Methods of studying soil microbial diversity. J Microbiol Methods, 2004, 58: 169~188
2 Pankhurst CE, Yu S, Hawke BG, Harch BD. Capacity of fatty acid profiles and substrate utilization patterns to describe differences in soil microbial communities associated with increased salinity or alkalinity at three locations in South Australia. Biol & Fertil Soils, 2001, 33: 204~217
3 Frey SD, Knorr M, Parrent JL, Simpson RT. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. For Ecol & Manag, 2004, 196: 159~171
4 Grayston SJ, Campbell CD, Bardgett RD, Mawdsley JL, Clegg CD, Ritz K, Griffiths BS, Rodwell JS, Edwards SJ, Davies WJ, Elston DJ, Millard P. Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Appl Soil Ecol, 2004, 25: 63~84
5 White C, Tardif JC, Adkins A, Staniforth R. Functional diversity of microbial communities in the mixed boreal plain forest of central Canada. Soil Biol & Biochem, 2005, 37: 1359~1372
6 Bao SD (鲍士旦). Soil and Agricultural Chemistry Analysis. Beijing (北京): China Agricultural Press (中国农业出版社), 2000
7 Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C. Soil Biol & Biochem, 1987, 19: 703~707
8 Garland JL. Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biol & Biochem, 1996, 28: 213~221
9 Insam H, Hitzl W. Data evaluation of community-level physiological profiles: A reply to letter of Howard. Soil Biol & Biochem, 1999, 31: 1198~1200
10 Grayston SJ, Wang S, Campbell CD, Edwards AC. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol & Biochem, 1998, 30: 369~378
11 Baudoin E, Benizri E, Guckert A. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol & Biochem, 2003, 35: 1183~1192
12 Kiikkilä O, V Kitunen, Smolander A. Dissolved soil organic matter from surface organic horizons under birch and conifers: Degradation in relation to chemical characteristics. Soil Biol & Biochem, 2006, 38: 737~746
13 Liu YL (柳云龙), Hu HT (胡宏涛). Effects of landscape and soil utilization styles on red soil physical properties. J Soil & Water Conserv (水土保持学报), 2004, 18: 22~26
14 Zibilske LM, Bradford JM. Oxygen effects on carbon, polyphenols, and nitrogen mineralization potential in soil. Soil Sci Soc Am J, 2007, 71: 133~139
15 Thomsen IK, Schjønning P, Jensen B, Kristensen K, Christensen B T. Turnover of organic matter in differently textured soils: II. Microbial activity as influenced by soil water regimes. Geoderma, 1999, 89: 199~218
16 Capriel P, Beck T, Borchert H, Gronholz J, Zachmann G. Hydrophobicity of the organic matter in arable soils. Soil Biol & Biochem, 1995, 27: 1453~1458
17 Paul EA, Clark FE. Soil Microbiology and Biochemistry. San Diego: Academic Press, 1996. 131~146
18 Cookson WR, Abaye DA, Marschner P, Murphy DV, Stockdale EA, Goulding KWT. The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure. Soil Biol & Biochem, 2005, 37: 1726~1737
19 Griffiths BS, Ritz K, Ebblewhite N, Dobson G. Soil microbial community structure: Effects of substrate loading rates. Soil Biol & Biochem, 1999, 31: 145~153
20 Smolander A, Kitunen V. Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species. Soil Biol & Biochem, 2002, 34: 651~660
21 Ju XT (巨晓棠), Bian XJ (边秀举), Liu XJ (刘学军), Zhang FS (张福锁), Mao DR (毛达如). Relationship between soil nitrogen mineralization parameter with several nitrogen forms. Plant Nutr & Fertil Sci (植物营养与肥料学报), 2000, 6: 251~259
22 Mulyukin AL, Sorokin VV, Loiko NG, Suzina NE, Duda VI, Vorob’eva EA, El’-Registan GI. Comparative study of elemental composition in vegetative and resting microbial cells. Microbiology, 2002, 71: 31~41
23 Chandra S, Joshi HC, Pathak H, Jain MC, Kalra N. Effect of potassium salts and distillery effluent on carbon mineralization in soil. Bioresour Technol, 2002, 83: 255~257
24 Zheng H (郑华), Ouyang ZY (欧阳志云), Zhao TQ (赵同谦), Wang XK (王效科), Miao H (苗鸿), Peng TB (彭廷柏). Effect of different forest restoration approaches on soil biological properties. Chin J Appl Environ Biol (应用与环境生物学报), 2006, 12: 36~43
25 Lacroix G, Abbadie L. Linking biodiversity and ecosystem function: An introduction. Acta Oecol, 1998, 19: 189~193

相似文献/References:

[1]罗倩,黄宝灵,唐治喜,等.新疆盐渍土3种植被类型土壤微生物碳源利用[J].应用与环境生物学报,2013,19(01):96.[doi:10.3724/SP.J.1145.2013.00096]
 LUO Qian,HUANG Baoling,TANG Zhixi,et al.Carbon Source Utilization of Microbes in Saline Soil of Three Vegetation Types in Xinjiang, China[J].Chinese Journal of Applied & Environmental Biology,2013,19(06):96.[doi:10.3724/SP.J.1145.2013.00096]
[2]郭莹,王一明,巫攀,等.长期施用粪肥对水稻土中微生物群落功能多样性的影响[J].应用与环境生物学报,2019,25(03):593.[doi:10.19675/j.cnki.1006-687x.201809028]
 GUO Ying,WANG Yiming**,et al.Influence of long-term manure application in paddy soil on the functional diversity of microbial community[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):593.[doi:10.19675/j.cnki.1006-687x.201809028]
[3]张奇,张清旭,陈尧,等.稗草根系分泌物诱导下水稻化感抑草潜力及根际土壤微生物多样性变化[J].应用与环境生物学报,2020,26(04):936.
 ZHANG Qi,ZHANG Qingxu,et al.Changes in the of allelopathic potential and microbial diversity in of rhizosphere soils of rice under induction of barnyard grass root exudates[J].Chinese Journal of Applied & Environmental Biology,2020,26(06):936.

备注/Memo

备注/Memo:
国家自然科学基金项目(No. 40621001)资助
更新日期/Last Update: 2009-01-09