|本期目录/Table of Contents|

[1]高晓钰 杨桐 单航 汤鑫 王昊 倪乐意 丑庆川**.洱海流域人工湿地水质净化效率及其影响因素[J].应用与环境生物学报,2021,27(03):1-17.[doi:10.19675/j.cnki.1006-687x.2020.06064]
 GAO X iaoyu,YANG T ong,et al.Water purification efficiency and influence factors of constructed wetlands in Erhai Basin[J].Chinese Journal of Applied & Environmental Biology,2021,27(03):1-17.[doi:10.19675/j.cnki.1006-687x.2020.06064]
点击复制

洱海流域人工湿地水质净化效率及其影响因素()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
27卷
期数:
2021年03期
页码:
1-17
栏目:
研究论文
出版日期:
2021-06-25

文章信息/Info

Title:
Water purification efficiency and influence factors of constructed wetlands in Erhai Basin
作者:
高晓钰12 杨桐3 单航12 汤鑫45 王昊12 倪乐意1 丑庆川12**
1中国科学院水生生物研究所 武汉 430072
2中国科学院大学 北京 100049
3大理市洱海管理局 大理 671000
4北控水务中国投资有限公司 北京 100049
5北京北华清创环境科技有限公司 北京 100049
Author(s):
GAO X iaoyu1 2 YANG T ong3 SHAN H ang1 2 TANG Xin4 5 WANG Hao1 2 NI L eyi1 & CHOU Qingchuan1 2**
1 Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
2 Chinese Academy of Sciences University , Beijing 100049, China
3 Dali Erhai Administration, Dali 671000, China
4 Beijing Enterprises Water (China) investment Co., Ltd , Beijing 100049, China
5 Beijing Beihua Qingchuang Environemtal Technology Co., Ltd, Beijing 100049, China
关键词:
洱海流域人工湿地净化效率湿地面积覆水范围水生植物
Keywords:
Erhai Basin constructed wetlands purification efficiency wetland area water coverage aquatic plant
DOI:
10.19675/j.cnki.1006-687x.2020.06064
摘要:
近年来,人工湿地生态系统在世界各地逐渐受到重视并被广泛运用到流域内点源和非点源污染的处理中。为探明洱海流域人工湿地的运行现状及水质净化功能,本研究于2019年9-10月间对洱海流域内34座人工湿地进行调查,测定了湿地面积(A)、运行时间(T)、覆水范围(WC)、植被覆盖度(VC)、水体流动性(Fvol,Fvel)、水质净化效率(R(TP),R(TN))、进出口水体溶解氧(DO)等参数。根据各湿地中R(TP)、R(TN)、WC、VC、入水磷浓度(Inflow-TP)等参数的差异将湿地分为两类,其中第一类人工湿地总氮平均去除率R(TN)和总磷平均去除率R(TP)分别为51.6%、52.6%,R(TN)与A、T显著负相关,与入水氮磷浓度(Inflow-TN,Inflow-TP)存在正相关关系, 漂浮植物和沉水植物较挺水植物在氮磷去除上具明显优势,为具有明显净化效果的湿地; 第二类人工湿地R(TN)和R(TP)分别为-4.9%、-11.8%, 这说明此类湿地的氮磷去除能力已退化,无明显净化效果。综上所述,覆水充足、漂浮和沉水植物群落占优势的人工湿地具有较高的氮磷去除能力,中小型湿地(0.10 km2-0.50 km2)在运行期间较易管理,其氮磷去除能力较大型湿地(大于0.50 km2)更强。本研究结果可为流域尺度上人工湿地的统一建设和科学管理提供理论依据。(图6 表4 参53)
Abstract:
In recent years, constructed wetland ecosystem ha s gradually received increasing attention around the world and has been widely used in the treatment of point and non-point source pollution in the basin. In order to explore the operating status of the constructed wetland in the Erhai Basin , we surveyed 34 constructed wetlands in the Erhai Basin in September-October 2019. We determined the wetland area (A) , run time (T), water coverage (WC), vegetation coverage (VC), and water circulation (Fvel, Fvol), water purification efficiency, dissolved oxygen (DO) of inlet and outlet, etc. According to the differences in parameters such as R(TP), R(TN), WC, VC, Inflow-TP, etc., the wetlands are divided into two different type. The average removal rate of total nitrogen ( TN) and total phosphorus (TP) of the first type of constructed wetlands are 51.6 % and 52.6%, respectively, which means this type of wetland has obvious purification effect. The TN removal rate is significantly negatively correlated with A and T , and positively correlated with the concentration of N and P in the inflow water. Floating plants and submerged plants have obvious advantages in removing N and P compared to emergent plants. The average removal rate of TN and TP of the second type constructed wetlands are -4.9% and -11.8%, respe ctively, which indicates that the N and P removal capability wetlands has degraded, and this type of wetland hasn’t obvious purification effect. In summary, the constructed wetlands have high N and P removal capabilities with sufficient water cover, dominated by floating and submerged plant communities. As small and medium wetlands (0.10 km2-0.50 km2) are easier to manage during operation, therefore, its N and P removal capacity is stronger than larger wetlands ( > 0.5 0 km2). The se results can provide theoretical basis for the unified construction and scientific management of constructed wetlands on the watershed scale.

相似文献/References:

[1]王萌,王玉彬,陈章和.芦苇的种质资源及在人工湿地中的应用[J].应用与环境生物学报,2010,16(04):590.[doi:10.3724/SP.J.1145.2010.00590]
 WANG Meng,WANG Yubin,CHEN Zhanghe.Germplasm Resource of Phragmites adans and Its Application in Constructed Wetlands[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):590.[doi:10.3724/SP.J.1145.2010.00590]
[2]韦菊阳,陈章和.梭鱼草和芦苇人工湿地对重金属和营养的去除率比较[J].应用与环境生物学报,2013,19(01):179.[doi:10.3724/SP.J.1145.2013.00179]
 WEI Juyang,CHEN Zhanghe.Removal of Heavy Metal Elements and Nutrients by Pontederia cordata and Phragmites australis Constructed Wetlands[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):179.[doi:10.3724/SP.J.1145.2013.00179]
[3]王萌,许新,陈章和.人工湿地土壤微生物生物量碳与污水净化效果的关系[J].应用与环境生物学报,2013,19(01):113.[doi:10.3724/SP.J.1145.2013.00113]
 WANG Meng,XU Xin,CHEN Zhanghe.Relationship of Soil Microbial Biomass Carbon and Nutrient Removal Rates in Constructed Wetlands[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):113.[doi:10.3724/SP.J.1145.2013.00113]
[4]吴文卫,刘 昂 谷照虎 徐慧妮 赵 磊 陈宣钦 陈丽梅 李昆志**.采用PCR-DGGE技术研究处理农田退水组合人工湿地微生物群落特征[J].应用与环境生物学报,2016,22(06):978.[doi:10.3724/SP.J.1145.2015.07031]
 WU Wenwei,LIU Ang,et al.A PCR-DGGE study of bacteria community diversity in the constructed wetland treated with agricultural return flow[J].Chinese Journal of Applied & Environmental Biology,2016,22(03):978.[doi:10.3724/SP.J.1145.2015.07031]
[5]李杨,李斌,李淑丹,等.洱海流域河流生态系统健康评价[J].应用与环境生物学报,2017,23(03):427.[doi:2016.06023]
 LI Yang,LI Bin,LI Shudan,et al.River ecosystem health assessment of the Erhai basin[J].Chinese Journal of Applied & Environmental Biology,2017,23(03):427.[doi:2016.06023]
[6]高宇,章龙珍,张婷婷,等.点篮子鱼对人工湿地的水生态系统工程师效应[J].应用与环境生物学报,2017,23(04):734.[doi:10.3724/SP.J.1145.2016.09039]
 GAO Yu,ZHANG Longzhen,ZHANG Tingting,et al.Antibiotic and disinfectant resistance of Escherichia coli isolated from a chicken farm[J].Chinese Journal of Applied & Environmental Biology,2017,23(03):734.[doi:10.3724/SP.J.1145.2016.09039]
[7]李芊芊,罗柳青,陈洋芳,等.高盐污水处理人工湿地中耐盐植物的筛选[J].应用与环境生物学报,2017,23(05):873.[doi:10.3724/SP.J.1145.2016.10044]
 LI Qianqian,LUO Liuqing,CHEN Yangfang & WANG Wenqing,et al.Selection of salt-tolerant plants for high-salinity wastewater treatment by constructed wetlands[J].Chinese Journal of Applied & Environmental Biology,2017,23(03):873.[doi:10.3724/SP.J.1145.2016.10044]

备注/Memo

备注/Memo:
收稿日期 Received: 2020-06-28 修订日期 Accepted: 2020-08-30
国家自然科学基金项目和淡水生态与生物技术国家重点实验室课题资助(2019FBZ01)资助
**通讯作者 Corresponding author (E-mail: chouqc@ihb.ac.cn)
点击摘要页题目后的“PDF”可下载阅读全文;本文为已录用的作者修定稿,尚未经编辑全面修改。
引用本文请注明出处本刊;发表刊期和页码将以正式出版时的安排为准,但DOI确定不变。
更新日期/Last Update: 2020-09-10