|本期目录/Table of Contents|

[1]李婷,吴明辉,杨馨婷,等.【综述】植物与微生物对重金属的抗性机制及联合修复研究进展[J].应用与环境生物学报,2021,27(03):1-15.[doi:10.19675/j.cnki.1006-687x.2020.06062]
 LI Ting,WU Ming -hui,YANG Xin-ting,et al.Advances in the mechanism of heavy metal resistance and combined remediation of plants and microorganisms[J].Chinese Journal of Applied & Environmental Biology,2021,27(03):1-15.[doi:10.19675/j.cnki.1006-687x.2020.06062]
点击复制

【综述】植物与微生物对重金属的抗性机制及联合修复研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
27卷
期数:
2021年03期
页码:
1-15
栏目:
研究论文
出版日期:
2021-06-25

文章信息/Info

Title:
Advances in the mechanism of heavy metal resistance and combined remediation of plants and microorganisms
作者:
李婷12吴明辉3杨馨婷12杨化菊12王越12段昌群12**
1云南大学生态学与环境学院 昆明 650000
2云南省高原山地生态与退化环境修复重点实验室 昆明 650000
3中国科学院大学 北京 100049
Author(s):
LI Ting12 WU Ming -hui3 YANG Xin-ting12 YANG Hua-ju12 WANG Yue12 DUAN Chang-qun12*
1 School of Ecology and Environmental Science, Yunnan University, Kunming 650000, China
2 Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments , Kunming 650000, China
3 University of Chinese Academy of Sciences, Beijing 101408, China
关键词:
重金属污染抗性基因基因挖掘基因水平转移植物-复合菌株修复
Keywords:
heavy metal pollution resistance genes gene mining horizontal gene transfer compound plant-microorganism remediation
DOI:
10.19675/j.cnki.1006-687x.2020.06062
摘要:
人类活动导致重金属污染逐步扩大,生物为了适应重金属污染而产生的抗性能够应用于重金属修复。相比于物理化学修复,植物和微生物修复更具环保性、经济性。本文归纳梳理了植物和微生物的重金属抗性机制及相关基因,并对植物-微生物联合修复的技术与应用进行综述。分析认为,植物与微生物抗重金属过程均由多个基因控制,污染地区的原位植物和微生物具有更好的环境适应能力和应用潜力,是抗性资源挖掘的理想来源。当前,基因组学手段成为挖掘生物重金属抗性资源的关键手段,同时基因的水平转移以及基因编辑技术的应用极大地丰富了抗性资源及表达。此外,植物-复合微生物联合作用提高了修复可行性和效率。微生物通过促生作用、分泌酸性物质、增加植物中重金属运输、螯合、抗氧化等相关基因表达来增强植物修复能力,但内生菌辅助植物修复重金属机制尚不明确。目前常用复合菌剂包括多种根际促生菌、细菌-真菌、根际菌-内生菌组合,但其应用受到接种方式和施用条件的影响。由于污染环境的复合性和复杂性,未来多功能基因表达技术的开发和复合植物-微生物修复机制研究将会成为焦点。
Abstract:
Due to extensive pollution of heavy metal by anthropogenic disturbance, series of resistance systems against heavy metals in many organisms have been driven to evolve, which could be applied to remediation of heavy metal contaminations. Compared with traditional and physicochemical remediation, plant and microbial remediations are more suitable for ecological remediation as a result of being more environmentally friendly and lower costly. We reviewed the gene resources and molecular mechanism of heavy metal resistance about plants and microorganisms respectively , and the technology and application of plant-microorganism remediation were summarized. According to the review, the resistance process of heavy metal within plants and microorganisms is encoded by multiple genes. The in-situ plants and microorganisms in polluted areas present greater environmental adaptability and higher applicable potentiality, which are ideal materials to develop resistance resources. Currently, genomics has become an excellent tool for mining resistant gene resources. It is delightful to find that horizontal gene transfer and gene editing technology enriches the heavy metal resistant resources, and also increases the expression of resistance. Moreover, higher repair feasibility and efficiency might be carried out by plant-microorganism combined systems. Microorganisms enhance remediation capacity of plant by promoting growth, secreting acidic substances to dissolve heavy metals, amplifying the genetic expression of heavy metal transport, chelation, antioxidant and other resistance processes in plants. However, the mechanism of endophyte assisting phytoremediation still remains unclear. Up to now, composite microbial agents, such as multiple plant growth promoting rhizobacteria, bacterial-fungal combinations and rhizosphere microorganism-endophyte combinations, are commonly used, but their application is affected by the inoculation methods and applying conditions. In general , diverse and complex pollution environment require us to develop cross-species and multi-gene editing techniques, and the future remediation should focus on the resistance mechanism of compound plant-microorganism synergistic remediation.

相似文献/References:

[1]王建民,程伟,韩琅丰,等.垃圾堆肥在北方潮土地区的农用研究[J].应用与环境生物学报,1995,1(04):379.
 Wang Jianmin,Cheng Wei,Han Langfeng,et al.AGRICULTURAL STUDY ON REFUSE COMPOST APPLIED TO THE DAMP SOIL IN NORTH CHINA[J].Chinese Journal of Applied & Environmental Biology,1995,1(03):379.
[2]郭永灿,王振中,张友梅,等.重金属对蚯蚓的毒性毒理研究[J].应用与环境生物学报,1996,2(02):132.
 Guo Yongcan,Wang Zhenzhong,Zhang Youmei,et al.STUDIES ON TOXICITY AND TOXICOLOGY OF HEAVY METALS TO EARTHWORMS IN POLLUTED SOILS[J].Chinese Journal of Applied & Environmental Biology,1996,2(03):132.
[3]高玉荣,许木启.乐安江重金属污染对浮游植物群落结构的影响[J].应用与环境生物学报,1996,2(02):175.
 Gao Yurong,Xu Muqi.A STUDY ON THE EFFECT OF HEAVY METAL POLLUTION ON PHYTOPLANKTON COMMUNITY STRUCTURE IN THE LEAN RIVER[J].Chinese Journal of Applied & Environmental Biology,1996,2(03):175.
[4]朱江,任淑智.德兴铜矿废水对乐安江底栖动物群落的影响[J].应用与环境生物学报,1996,2(02):162.
 Zhu Jiang,Ren Shuzhi.EFFECT OF THE WASTEWATER FROM A COPPER MINE ON BENTHOS COMMUNITY IN THE LEAN RIVER[J].Chinese Journal of Applied & Environmental Biology,1996,2(03):162.
[5]董越梅,安千里,李久蒂,等.利用GFP和抗性双类型标记监测联合固氮菌在玉米根际的定殖[J].应用与环境生物学报,2000,6(01):61.
 DONG Yuemei,et al..Use of gfp and antibiotic resistance as selective markers to monitor colonization of associated nitrogen-fixing bacteria in maize rhizosphere[J].Chinese Journal of Applied & Environmental Biology,2000,6(03):61.
[6]刘延盛,鲁家米,周晓阳.Pb在豌豆幼苗细胞中的超微结构分布与毒性研究[J].应用与环境生物学报,2007,13(05):647.
 LIU Yansheng,et al..Cellular Damages and Accumulation of Pb Polluted Pisum sativum L.:Implication for Phytoremediation[J].Chinese Journal of Applied & Environmental Biology,2007,13(03):647.
[7]曹哲明,杨健.不同浓度Cd2+对鲤鱼基因组DNA的影响[J].应用与环境生物学报,2010,16(04):457.[doi:10.3724/SP.J.1145.2010.00457]
 CAO Zheming,YANG Jian.Effect of Cadmium at Different Concentrations on Genomic DNA of Common Carps[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):457.[doi:10.3724/SP.J.1145.2010.00457]
[8]焦伟,卢少勇,李光德,等.环太湖主要进出河流重金属污染及其生态风险评价[J].应用与环境生物学报,2010,16(04):577.[doi:10.3724/SP.J.1145.2010.00577]
 JIAO Wei,LU Shaoyong,LI Guangde,et al.Heavy Metal Pollution of Main Inflow and Outflow Rivers Around the Taihu Lake and Assessment of Its Potential Ecological Risk[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):577.[doi:10.3724/SP.J.1145.2010.00577]
[9]王德胜,陈兰,敬小兵,等.螯合剂和表面活性剂辅助金福菇修复重金属污染土壤[J].应用与环境生物学报,2012,18(01):100.[doi:10.3724/SP.J.1145.2012.00100]
 WANG Desheng,CHEN Lan,JING Xiaobing,et al.Chelator- and Surfactant-assisted Remediation of Heavy Metal Contaminated Soil by Tricholoma lobayense Heim[J].Chinese Journal of Applied & Environmental Biology,2012,18(03):100.[doi:10.3724/SP.J.1145.2012.00100]
[10]黄志钧,李大平.重金属铜离子抗性菌株的筛选和吸附性能[J].应用与环境生物学报,2012,18(06):964.[doi:10.3724/SP.J.1145.2012.00964]
 HUANG Zhijun,LI Daping.Cu2+ Biosorption by a Highly Copper Resistant Bacterium Isolated from Soil[J].Chinese Journal of Applied & Environmental Biology,2012,18(03):964.[doi:10.3724/SP.J.1145.2012.00964]

备注/Memo

备注/Memo:
收稿日期 Received: 2020-06-23 接受日期 Accepted: 2020-09-25
国家自然科学基金项目(31670522,3106256)、云南省高原山地生态与退化环境修复重点实验室开放基金(2018DG005)资助
**通讯作者 Corresponding author (E-mail: chqduan@ynu.edu.cn)
引用本文请注明出处本刊;发表刊期和页码将以正式出版时的安排为准,但DOI确定不变。
更新日期/Last Update: 2020-11-06