|本期目录/Table of Contents|

[1]卓晨 陈琪 苏增强 黎华寿 陈桂葵 贺鸿志**.[综 述] 微生物缓解镉对水稻的毒害研究进展[J].应用与环境生物学报,2021,27(01):1-10.[doi:10.19675/j.cnki.1006-687x.2020.02013]
 ZHUO Chen,CHEN Qi,SU Zengqiang,et al.Advances in microbial mitigation of cadmium toxicity in rice[J].Chinese Journal of Applied & Environmental Biology,2021,27(01):1-10.[doi:10.19675/j.cnki.1006-687x.2020.02013]
点击复制

[综 述] 微生物缓解镉对水稻的毒害研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
27卷
期数:
2021年01期
页码:
1-10
栏目:
综 述
出版日期:
2021-02-25

文章信息/Info

Title:
Advances in microbial mitigation of cadmium toxicity in rice
作者:
卓晨 陈琪 苏增强 黎华寿 陈桂葵 贺鸿志**
农业部华南热带农业环境重点实验室,华南农业大学资源环境学院 广州 510642
Author(s):
ZHUO Chen CHEN Qi SU Zengqiang LI Huashou CHEN Guikui & HE Hong zhi**
Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, the College of Natural Resources and Environment of South China Agricultural University, Guangzhou 510642, China
关键词:
水稻微生物重金属胁迫
Keywords:
rice microorganism cadmium heavy metal stress
DOI:
10.19675/j.cnki.1006-687x.2020.02013
摘要:
当前水稻是重金属超标最为严重的粮食作物,安全耕种是镉(Cd)中轻度污染区域农田利用的优先解决方案,对水稻可以通过降低Cd在土壤中的生物有效性和阻止其经由水稻根系吸收及向稻米的转运实现安全生产。近年来国内外研究表明利用微生物菌剂可以缓解Cd对水稻的毒害作用并降低籽粒Cd含量。本文主要就近5年国内外关于微生物缓解Cd对水稻的胁迫效果及其机理的最新研究进展进行综述。最新研究成果表明:能缓解Cd对水稻毒害的微生物包括细菌、真菌和绿藻等,其中以细菌居多,同时,不同微生物耐Cd能力差异巨大。接种微生物可使水稻籽粒Cd含量降低20%-74.2%,但仅有部分能降低到可供食用的水平。微生物缓解Cd对水稻毒害作用主要机理包括:降低土壤中Cd的生物可利用度(微生物细胞直接固定或产生胞外分泌物固定Cd)、调控水稻对Cd的吸收转运(促进根系铁膜形成、改变转运蛋白基因的表达、改变Cd在水稻中的分布和化学形态)、提高水稻抗氧化能力(提高抗氧化酶活性和抗氧化物质含量)、分泌促生长物质(植物激素等)、改变土壤理化性质和微生物群落组成等。这些研究表明微生物在提高水稻Cd抗性和降低水稻籽粒Cd含量方面具有不错的应用潜力,但当前相关研究依然存在微生物筛选原则不合理、菌株筛查范围有限、研究多限于实验室水培或盆栽实验、籽粒Cd降幅有限等问题;此外,微生物调控水稻对Cd的吸收转运等的机制尚不清楚;今后应针对性地加强微生物缓解Cd对水稻毒害的机理研究和大田应用评估工作,以期早日实现这一环境友好技术的推广应用。(图1表2参60)
Abstract:
At present, rice ( Oryza sativa L.) is the food crop with the most excessive heavy metal content. Safe cultivation is a priority solution for the farmland utilization in the moderately and lightly polluted areas of cadmium (Cd). Safe production of rice can be realized by reducing the bioavailability of Cd in soil and preventing its uptake by rice roots and translocation to grains. In recent years, many studies at home and abroad have shown that the use of microbial agents can alleviate the toxic effect of Cd on rice and reduce the content of Cd in grains. This paper reviewed the recent advances in microbial mitigation of Cd stress on rice and its mechanism in recent five years. The latest research results show that the microorganisms that can alleviate the toxicity of Cd to rice include bacteria, fungi and green algae, among which bacteria are the majority. At the same time, the resistance of different microorganisms to Cd varies greatly. Microbial inoculation reduced Cd content in rice grains by 20%-74.2%, but only some of the microorganisms could reach the edible level. The main mechanisms of microbial mitigation of toxic effects of Cd on rice include: reducing the biological availability of Cd in soil through fixing by microbial cells directly or by extracellular secretion produced by microbial cells , regulating the absorption and transport ation of Cd by rice (promoting root iron membrane formation, chang ing transport protein gene expression, altering distribution and chemical forms of Cd in rice), enhancing the antioxidant capacity of rice (the activity of antioxidant enzymes and antioxidants content), secret ing growth promoting substance s (such as plant hormone s), altering soil physical and chemical properties and microbial community composition and so on. These studies indicate that the application potential of microorganisms in promoting Cd resistance of rice and reducing Cd content in grains is tremendous, but the current related research still exist unreasonable principle of microbial screening, limited strain screening scope, being limited to laboratory hydroponic or potted experiment, and limited grain Cd decline. In addition, the mechanism by which microorganisms regulate the uptake and transport of Cd in rice remains unclear. In the future, the mechanisms of microbial mitigation of Cd toxicity to rice and the field application uation should be strengthened so as to realize the field application of this environment-friendly technology at an early date.

相似文献/References:

[1]万波,赵海,李安明,等.冬尖发酵的微生物学研究[J].应用与环境生物学报,1995,1(02):196.
 Wan Bo,Zhao Hai,Li Anming,et al.STUDY ON MICROORGANISMS IN DONGJIAN FERMENTATION[J].Chinese Journal of Applied & Environmental Biology,1995,1(01):196.
[2]闵航,陈美慈,钱泽澍.水田中水稻、稗草和异型莎草甲烷排放的生物学特性[J].应用与环境生物学报,1995,1(02):114.
 Min Hang,Chen Meici,Qian Zheshu.BIOLOGICAL CHARACTERISTICS OF METHANE EMISSION THROUGH ORYZA SATIVA,PANICUM CRUS-GALLI AND CYPERUS DIFFORMIS GROWING IN PADDY SOIL[J].Chinese Journal of Applied & Environmental Biology,1995,1(01):114.
[3]张彤,朱怀兰,林哲.微生物絮凝剂的研究与应用进展[J].应用与环境生物学报,1996,2(01):95.
 Zhang Tong,Zhu Huailan,Lin Zhe.PROGRESSES OF MICROBIAL FLOCCULANT STUDIES AND APPLICATION[J].Chinese Journal of Applied & Environmental Biology,1996,2(01):95.
[4]唐景春,KATAYAMA,Arata.醌类图谱分析在环境微生物生态测定中的应用[J].应用与环境生物学报,2004,10(04):530.
 TANG Jingchun,et al..Application of quinone profile analysis for the characterization of microbial ecology in environment[J].Chinese Journal of Applied & Environmental Biology,2004,10(01):530.
[5]陈济安,舒为群,张学奎,等.邻苯二甲酸二(2-乙基己基)酯酶促降解研究[J].应用与环境生物学报,2004,10(04):471.
 CHEN Jian,et al..Biodegradation of di(2ethylhexyl) phthlate(DEHP) by enzyme[J].Chinese Journal of Applied & Environmental Biology,2004,10(01):471.
[6]王璐,张宏武,张晓梅,等.微生物对生物柴油副产物甘油的利用研究进展[J].应用与环境生物学报,2008,14(06):885.[doi:10.3724/SP.J.1145.2008.00885]
 WANG Lu,ZHANG Hongwu,ZHANG Xiaomei & XU Ganrong*.Progress in Research of Microbial Utilization of Glycerol-containing Wastes from Biodiesel Production[J].Chinese Journal of Applied & Environmental Biology,2008,14(01):885.[doi:10.3724/SP.J.1145.2008.00885]
[7]吴照辉,贺立源,严昶,等.低磷胁迫对水稻地上部钙、镁吸收和积累的影响[J].应用与环境生物学报,2009,15(03):295.[doi:10.3724/SP.J.1145.2009.00295]
 WU Zhaohui,HE Liyuan,YAN Chang,et al.Effect of Low Phosphorus Stress on Calcium and Magnesium Absorption and Accumulation in Rice Shoot[J].Chinese Journal of Applied & Environmental Biology,2009,15(01):295.[doi:10.3724/SP.J.1145.2009.00295]
[8]郭再华,孟萌,侯彦琳.磷、砷双重胁迫对不同耐低磷水稻苗期生长及磷、砷吸收的影响[J].应用与环境生物学报,2009,15(05):596.[doi:10.3724/SP.J.1145.2009.00596]
 GUO Zaihua,MENG Meng & HOU Yanlin.Effect of P and As Couple Stress on Growth, and P and As Absorption of Different P-tolerant Rice Seedlings[J].Chinese Journal of Applied & Environmental Biology,2009,15(01):596.[doi:10.3724/SP.J.1145.2009.00596]
[9]王志春,杨福,齐春艳.盐碱胁迫对水稻花粉扫描特征和生活力的影响[J].应用与环境生物学报,2010,16(01):63.[doi:10.3724/SP.J.1145.2010.00063]
 WANG Zhichun,YANG Fu,QI Chunyan.Effects of Salinity and Sodicity Stresses on Pollen Surface Characteristics and Viability of Rice[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):63.[doi:10.3724/SP.J.1145.2010.00063]
[10]吴照辉,贺立源,严昶,等.低磷胁迫对水稻铁、锰吸收和积累的影响[J].应用与环境生物学报,2010,16(02):185.[doi:10.3724/SP.J.1145.2010.00185]
 WU Zhaohui,HE Liyuan,YAN Chang,et al.Effect of Low Phosphorus Stress on Fe and Mn Absorption and Accumulation by Rice Shoots[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):185.[doi:10.3724/SP.J.1145.2010.00185]
[11]卓晨,陈琪,苏增强,等.微生物缓解镉对水稻的毒害研究进展[J].应用与环境生物学报,2020,26(05):1154.[doi: 10.19675/j.cnki.1006-687x.2020.02013]
 ZHUO Chen,CHEN Qi,SU Zengqiang,et al.Advances in microbial mitigation of cadmium toxicity in rice[J].Chinese Journal of Applied & Environmental Biology,2020,26(01):1154.[doi: 10.19675/j.cnki.1006-687x.2020.02013]

备注/Memo

备注/Memo:
收稿日期 Received: 2020-02-12 接受日期 Accepted: 2020-05-22
国家重点研发计划(2017YFD0800903)、广东大学生科技创新培育专项资金项目(pdjh2019b0086)、华南农业大学大学生创新创业训练计划项目(201810564001)、清远市科技计划项目(2019DZX005)和中山市社会公益科技研究项目(2019B2004)资助 Supported by the National Key Research and Development Program of China (2017YFD0800903), Special Fund Project for Scientific and Technological Innovation and Cultivation of Guangdong University Students (pdjh2019b0086), Undergraduate Innovation and Entrepreneurship Training Programs of South China Agricultural University (201810564001), the Science and Technology Planning Project of Qingyuan City (2019DZX005), and the public welfare science and technology research project of Zhongshan City (2019B2004)
**通讯作者 Corresponding author (E-mail: scauhhz@scau.edu.cn)
点击摘要页题目后的“PDF”可下载阅读全文;本文为已录用的作者修定稿,尚未经编辑全面修改。
引用本文请注明出处本刊;发表刊期和页码将以正式出版时的安排为准,但DOI确定不变。
更新日期/Last Update: 2020-05-22