|本期目录/Table of Contents|

[1]杨斌 彭长辉** 张贤 刘伟国 段敏 王猛.干旱胁迫对刺槐幼苗叶片氮含量、光合速率及非结构性碳水化合物的影响*[J].应用与环境生物学报,2019,25(06):1-16.[doi:10.19675/j.cnki.1006-687x.2019.03011]
 YANG Bin,PENG Changhui,**,et al.Effects of drought stress on leaf nitrogen, photosynthetic rate and non-structural carbohydrates of Robinia pseudoacacia L. seedlings *[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):1-16.[doi:10.19675/j.cnki.1006-687x.2019.03011]
点击复制

干旱胁迫对刺槐幼苗叶片氮含量、光合速率及非结构性碳水化合物的影响*()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年06期
页码:
1-16
栏目:
研究论文
出版日期:
2019-12-30

文章信息/Info

Title:
Effects of drought stress on leaf nitrogen, photosynthetic rate and non-structural carbohydrates of Robinia pseudoacacia L. seedlings *
作者:
杨斌1 彭长辉13** 张贤1 刘伟国1 段敏 1 王猛2
1西北农林科技大学林学院生态预测与全球变化研究中心 杨凌 712100
2东北师范大学泥炭沼泽研究所湿地生态与植被恢复国家环境保护重点实验室 长春 130024
3魁北克大学蒙特利尔分校环境科学研究所 加拿大蒙特利尔 C3H3P8
Author(s):
YANG Bin1 PENG Changhui1 3** ZHANG Xian1 LIU Weiguo 1 DUAN Min1 & WANG Meng2
1 Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling 712100, China
2 State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration , Institute for Peat and Mire Research , Northeast Normal University, Changchun 130024, China
3 Department of Biology Sciences, Institute of Environment Sciences, University of Quebec at Montreal, Montreal, C3H3P8, Canada
关键词:
干旱胁迫刺槐幼苗叶片氮含量光合速率非结构性碳水化合物(NSC)
Keywords:
drought stress Robinia pseudoacacia L. seedling N content in leaf photosynthetic rate non-structural carbohydrate (NSC)
DOI:
10.19675/j.cnki.1006-687x.2019.03011
摘要:
全球气候变化背景下,极端干旱和持续干旱频发,给中纬度地区的生态系统带来了巨大的影响。为揭示干旱胁迫对植物叶片氮含量、光合速率以及非结构性碳水化合物代谢的影响机制,采用盆栽试验,分析2年龄刺槐幼苗(Robinia pseudoacacia L. )叶生物量、氮含量、净光合速率和非结构性碳水化合物(NSC)及组分对不同干旱梯度的响应。试验包括极度干旱(Extreme drought,ED)、中度干旱(Moderate drought,MD)和对照组3个处理,其盆钵土壤相对含水量分别为田间持水量的10%、30%和70%。结果表明,在控水后0-30 d期间, ED和MD下槐树幼苗的叶片生物量和光合速率均持续下降,而对照的净光合速率保持平稳,生物量逐渐增多;总非结构性碳水化合物(Total nonstructural carbohydrates,TNSC)、可溶性糖(Soluble sugars,SS)和可溶性糖与淀粉含量的比值(RSS)变化规律类似,即在ED和MD处理下均呈现先增后减的趋势,而在对照条件下均保持平稳。叶片淀粉含量与光合速率和生物量干重的变化规律类似。ED使叶片氮含量(LN)下降,MD处理下LN呈现升高趋势,而在对照处理下LN呈现平稳趋势。叶片TNSC、SS及可溶性糖和淀粉含量的比值(RSS)均与土壤含水量呈显著负相关(P < 0.01),而叶淀粉含量、净光合速率和生物量与土壤含水量呈正相关(P < 0.01)。短期干旱对刺槐幼苗叶片TNSC、SS、淀粉、净光合速率和生物量有显著影响(P < 0.01)。因此,刺槐幼苗可能通过将叶片内临时存储的少量淀粉转化成其直接利用的可溶性糖的方式以维持其正常的新陈代谢等生命活动,以抵抗短期内的中度和极端干旱事件。
Abstract:
With global climate change, extreme drought and continuous drought occur frequently, which has a great impact on ecosystems in the middle latitudes. In order to reveal the effects of drought stress on nitrogen content, photosynthetic rate and non-structural carbohydrate metabolism in plant leaves, a pot experiment was conducted. The 2-year-old Robinia pseudoacacia seedlings were analyzed. Responses of leaf dry biomass, nitrogen content, net photosynthetic rate, non-structural carbohydrate (NSC) and components to different drought treatments. The experiment included three treatments: extreme drought (ED: Extreme drought), moderate drought (MD: Moderate drought) and control group. The relative water content of pot soil was 10%, 30% and 70% of field capacity, respectively. The results showed that the leaf dry biomass and net photosynthetic rate ( Pn) under ED and MD decreased continuously during the duration of 0-30 days after water control, while the net photosynthetic rate under the control treatment remained and the leaf dry biomass increased gradually. The changes of total non-structural carbohydrate (TNSC), soluble sugars (SS) and the ratio of soluble sugar to starch concentration (RSS) were similar, that is to say, they all increased at first and then decreased under ED and MD treatments. However, it remained under the control conditions. The changes of starch concentration in leaves were similar to Pn and the leaf dry biomass. ED decreased leaf nitrogen content (LN), and LN increased under MD treatment, and LN showed a stable trend under control treatment. Leaf TNSC, SS and RSS were negatively correlated with soil water content (P < 0.01), while leaf starch content, net photosynthetic rate and dry biomass were positively correlated with soil water content (P < 0.01). Our result showed short-term drought had significant effects on TNSC, SS, starch, net photosynthetic rate and leaf dry biomass of R. pseudoacacia seedlings ( P < 0.01). Therefore, R. pseudoacacia seedlings may resist moderate and extreme drought events in the short term by converting a small amount of starch temporarily stored in leaves into soluble sugar s directly used to maintain their normal metabolism and other life activities.

相似文献/References:

[1]王红梅,包维楷,李芳兰.不同干旱胁迫强度下白刺花幼苗叶片的生理生化反应[J].应用与环境生物学报,2008,14(06):757.[doi:10.3724/SP.J.1145.2008.00757]
 WANG Hongmei,BAO Weikai** & LI Fanglan.Physiological and Biochemical Responses of Two-years-old Sophora davidii Seedling Leaves to Different Water Stresses[J].Chinese Journal of Applied & Environmental Biology,2008,14(06):757.[doi:10.3724/SP.J.1145.2008.00757]
[2]张春梅,邹志荣,张志新,等.外源亚精胺对模拟干旱胁迫下番茄幼苗活性氧水平和抗氧化系统的影响[J].应用与环境生物学报,2009,15(03):301.[doi:10.3724/SP.J.1145.2009.00301]
 ZHANG Chunmei,ZOU Zhirong,ZHANG Zhixin,et al.Effects of Exogenous Spermidine on Reactive Oxygen Levels and Antioxidative System of Tomato Seedling under Polyethlene Glycol Stress[J].Chinese Journal of Applied & Environmental Biology,2009,15(06):301.[doi:10.3724/SP.J.1145.2009.00301]
[3]马守臣,徐炳成,李凤民,等.根修剪对冬小麦根系效率、水分利用及产量的影响[J].应用与环境生物学报,2009,15(05):606.[doi:10.3724/SP.J.1145.2009.00606]
 MA Shouchen,XU Bingcheng,LI Fengmin & HUANG Zhanbin.Effect of Root Pruning on Root Efficiency, Water Use and Yield of Winter Wheat[J].Chinese Journal of Applied & Environmental Biology,2009,15(06):606.[doi:10.3724/SP.J.1145.2009.00606]
[4]余孟好,孙谷畴,赵平.马占相思林冠层水分利用效率的气候调节[J].应用与环境生物学报,2010,16(03):309.[doi:10.3724/SP.J.1145.2010.00309]
 YU Menghao,SUN Guchou,ZHAO Ping.Climatic Control of Water Use Efficiency of Acacia mangium Forest Canopy[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):309.[doi:10.3724/SP.J.1145.2010.00309]
[5]孙霞,高信芬.聚乙二醇(PEG)模拟干旱胁迫对干旱河谷5种木蓝种子萌发的影响[J].应用与环境生物学报,2010,16(03):317.[doi:10.3724/SP.J.1145.2010.00317]
 SUN Xia,GAO Xinfen.Effect of Polyethylene Glycol (PEG) Simulated Drought Stress on Seed Germination of Five Species of Indigofera L. from Dry Valleys[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):317.[doi:10.3724/SP.J.1145.2010.00317]
[6]蔡海霞,吴福忠,杨万勤.模拟干旱胁迫对岷江干旱河谷—山地森林交错带4种乡土植物抗氧化酶系统的影响[J].应用与环境生物学报,2010,16(04):478.[doi:10.3724/SP.J.1145.2010.00478]
 CAI Haixia,WU Fuzhong,YANG Wanqin.Effect of Simulated Drought Stress on Antioxidant Enzyme System of Four Native Species in the Ecotone Between the Minjiang Dry Valley and Mountain Forest[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):478.[doi:10.3724/SP.J.1145.2010.00478]
[7]刘慧芬,王卫卫,曹桂林,等.氢气对刺槐根际土壤微生物种群和土壤酶活性的影响[J].应用与环境生物学报,2010,16(04):515.[doi:10.3724/SP.J.1145.2010.00515]
 LIU Huifen,WANG Weiwei,CAO Guilin,et al.Effect of Hydrogen on Microbial Population and Enzyme Activity in Robinia pseudoacacia Rhizosphere Soil[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):515.[doi:10.3724/SP.J.1145.2010.00515]
[8]蔺万煌,HOFMANN Rainer W,STILWELL Stephen.干旱胁迫下5种三叶草的生长和生理反应[J].应用与环境生物学报,2011,17(04):580.[doi:10.3724/SP.J.1145.2011.00580]
 LIN Wanhuang,HOFMANN Rainer W,STILWELL Stephen.Growth of Five Species of Trifolium and Their Physiological Responses to Drought Stress[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):580.[doi:10.3724/SP.J.1145.2011.00580]
[9]孙继亮,李六林,陶书田,等.干旱胁迫和复水对梨幼树生理特性的影响[J].应用与环境生物学报,2012,18(02):218.[doi:10.3724/SP.J.1145.2012.00218]
 SUN Jiliang,LI Liulin,TAO Shutian,et al.Effects of Drought Stress and Rewatering on Physiological Characteristics of Pear Seedling[J].Chinese Journal of Applied & Environmental Biology,2012,18(06):218.[doi:10.3724/SP.J.1145.2012.00218]
[10]彭晓珏,刘瑢,阳菁,等.Gateway技术构建盐和干旱胁迫下水稻根系混合cDNA文库及其质量鉴定[J].应用与环境生物学报,2014,20(02):291.[doi:10.3724/SP.J.1145.2014.00291]
 PENG Xiaojue,LIU Rong,YANG Jing,et al.Construction and identification of a mixed cDNA library of rice roots under salt and drought stress using Gateway technology[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):291.[doi:10.3724/SP.J.1145.2014.00291]

备注/Memo

备注/Memo:
收稿日期 Received: 2019-03-04 接受日期 Accepted: 2019-05-07
*国家重点研发计划项目(2016YFC0500203,2016YFC0501804)、国家“千人计划”项目、加拿大自然科学与工程研究委员会(NSERC)发现基金、国家自然科学基金(41571081,41601098)和西北农林科技大学林学院青年教师优秀计划项目(Z111021603)资助
**通讯作者 Corresponding author (E-mail: peng.changhui@uqam.ca)
点击摘要页题目后的“PDF”可下载阅读全文;本文为已录用的作者修定稿,尚未经编辑全面修改。
引用本文请注明出处本刊;发表刊期和页码将以正式出版时的安排为准,但DOI确定不变。
更新日期/Last Update: 2019-05-13