|本期目录/Table of Contents|

[1]倪宏宇航 弓雨欣 李祥锴**.微生物燃料电池阳极电极的新型材料与修饰方法*[J].应用与环境生物学报,2019,25(04):1-22.[doi:10.19675/j.cnki.1006-687x.2018.12022]
 NI Hongyuhang,Gong Yuxin & LI Xiangkai**.Applications of Recent Modification Methods and Materials in Microbial Fuel Cell Anode E lectrodes*[J].Chinese Journal of Applied & Environmental Biology,2019,25(04):1-22.[doi:10.19675/j.cnki.1006-687x.2018.12022]
点击复制

微生物燃料电池阳极电极的新型材料与修饰方法*()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年04期
页码:
1-22
栏目:
综 述
出版日期:
2019-07-30

文章信息/Info

Title:
Applications of Recent Modification Methods and Materials in Microbial Fuel Cell Anode E lectrodes*
文章编号:
201812022
作者:
倪宏宇航 弓雨欣 李祥锴**
兰州大学生命科学学院细胞活动与逆境适应教育部重点实验室 兰州 730000
Author(s):
NI Hongyuhang Gong Yuxin & LI Xiangkai**
?MOE Key Laboratory of Cell Activities and Stress Adaptations, S chool of Life Science, Lanzhou University, Lanzhou 730000, China
关键词:
微生物燃料电池功率密度生物质石墨烯导电性电阻
Keywords:
Microbial fuel cell Power density biomass graphene electrical conductivity resistance
DOI:
10.19675/j.cnki.1006-687x.2018.12022
摘要:
近年来,微生物燃料电池(Microbial fuel cells, MFCs)发展迅速,然而其功率输出仍然较低,其主要限制因素为接种物的活性及电极材料的选择。阳极电极常被作为有效的微生物载体,并介导电子的快速传递;因此使用新型的电极材料或修饰方法将成为提高MFC效率的重要手段。本篇综述根据材料的物理特性及改性方法,将阳极电极材料划分了5类:修饰后的传统碳电极材料、石墨烯修饰电极材料、天然生物质电极材料、碳纳米管修饰电极材料以及金属修饰电极材料,并着重介绍了其中的热点-石墨烯修饰电极材料与碳纳米管修饰电极材料。该综述的目的是调查新型材料在微生物燃料电池阳极中的应用及表现,通过其特征与修饰方法比较各类材料的优缺点。通过分析,我们归纳出部分能够促进微生物燃料电池电化学表现的优异性能,例如强导电性、生物相容性、高比表面积及耐腐蚀性等;同时,修饰过后的纳米材料、石墨烯材料及三维大孔材料将成为日后的研究重点。未来,研究者们在选择电极材料的时候,应当同时考虑性能的差异性和成本的可控性。人们只有将新材料及改性方法投入到实际的大规模应用中,才能合理有效的实现废水处理及生产清洁能源的目的。(图6 表5 参117)
Abstract:
Though Microbial fuel cells (MFCs) have evolved a lot in recent years, the power generation is still limited due to low active inoculum and selection of electrode materials. Anode electrodes are generally used as effective microbial carriers and can facilitate the rapid transfer of conductive ions. Therefore, the use of new electrode materials or modification of methods becomes significant to improve the efficiency of MFCs. The anode electrodes are divided into 5 categories depending on the physical characteristics and modification methods used for the material: the modified traditional carbon electrode material, graphene-modified electrode material, natural biomass electrode material, carbon nanotube-modified electrode material, and metal-modified electrode material, the carbon nanotube-modified and graphene-modified electrode materials have been well introduced. The objective of this review is to comparatively investigate the application and performance of new materials on MFC’s anode, and to relate the advantages and disadvantages of various materials and methods used. We summarize some excellent properties which can improve the performance of anode electrodes by analyzing strong conductivity, biocompatibility, high specific surface area, corrosion resistance and others. The modified nanomaterials, graphene materials and three-dimensional macroporous materials could become the focus points for future research. Considering the differences between the performance and material cost simultaneously, the selection of electrode constituents could be more feasible in the future. Also, actual large-scale applications of new materials and modification methods, would be helpful to realize the proficiency of wastewater treatment and the production of clean energy reasonably and effectively.? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??

相似文献/References:

[1]李登兰,洪义国,许玫英,等.微生物燃料电池构造研究进展[J].应用与环境生物学报,2008,14(01):147.
 LI Denglan,et al..Progress in Construction of Microbial Fuel Cell[J].Chinese Journal of Applied & Environmental Biology,2008,14(04):147.
[2]张雅舒,张礼霞,李大平.微生物燃料电池还原二氧化铅及产电研究[J].应用与环境生物学报,2012,18(05):780.[doi:10.3724/SP.J.1145.2012.00780]
 ZHANG Yashu,ZHANG Lixia,LI Daping.Simultaneous Reduction of Lead Dioxide and Improvement of Bioelectricity Production in Microbial Fuel Cell[J].Chinese Journal of Applied & Environmental Biology,2012,18(04):780.[doi:10.3724/SP.J.1145.2012.00780]
[3]崔旸,苏文涛,高平,等.还原性硫化物微生物燃料电池偶联偶氮染料降解[J].应用与环境生物学报,2012,18(06):978.[doi:10.3724/SP.J.1145.2012.00978]
 CUI Yang,SU Wentao,GAO Ping,et al.Microbial Fuel Cell Coupled Bio-oxidation of Reducing Sulfide with Degradation of Azo Dyes[J].Chinese Journal of Applied & Environmental Biology,2012,18(04):978.[doi:10.3724/SP.J.1145.2012.00978]
[4]郭静,徐自祥,付亚星,等.产电微生物基因组及代谢网络分析[J].应用与环境生物学报,2012,18(06):1075.[doi:10.3724/SP.J.1145.2012.01075]
 GUO Jing,XU Zixiang,FU Yaxing,et al.Analysis on Electricigen Genomes and Metabolic Networks[J].Chinese Journal of Applied & Environmental Biology,2012,18(04):1075.[doi:10.3724/SP.J.1145.2012.01075]
[5]刘柯,李大平,王娟.尿液微生物燃料电池研究[J].应用与环境生物学报,2015,21(01):36.[doi:10.3724/SP.J.1145.2014.03030]
 LIU Ke,LI Daping,WANG Juan.Study on urine microbial fuel cell[J].Chinese Journal of Applied & Environmental Biology,2015,21(04):36.[doi:10.3724/SP.J.1145.2014.03030]
[6]华涛,李胜男,周启星,等.生物电化学系统3种典型构型及其应用研究进展[J].应用与环境生物学报,2018,24(03):663.[doi:10.19675/j.cnki.1006-687x.2017.08046]
 HUA Tao,LI Shengnan,ZHOU Qixing,et al.Recent advances in three typical configurations and applications of bioelectrochemical systems[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):663.[doi:10.19675/j.cnki.1006-687x.2017.08046]
[7]蒋沁芮,李泽华,杨暖,等.三维电极微生物燃料电池处理生活污水同步产电性能[J].应用与环境生物学报,2018,24(04):873.[doi:10.19675/j.cnki.1006-687x.2017.11011]
 JIANG Qinrui,LI Zehua,et al.Microbial fuel cell with three-dimensional electrodes for domestic wastewater treatment and electricity generation[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):873.[doi:10.19675/j.cnki.1006-687x.2017.11011]

备注/Memo

备注/Memo:
收稿日期: 2018-12-11 接受日期 Accepted: 2018-12-26*国家自然科学基金项目(31870082)、中央高校基本科研业务费项目(lzujbky-2017-br01)、甘肃省重大科技攻关项目(17ZD2WA017)资助 **通讯作者(E-mail:xkli@lzu.edu.cn)点击摘要页题目后的“PDF”可下载阅读全文;本文为已录用的作者修定稿,尚未经编辑全面修改。引用本文请注明出处本刊;发表刊期和页码将以正式出版时的安排为准,但DOI确定不变。
更新日期/Last Update: 2018-12-29