|本期目录/Table of Contents|

[1]侯劭炜,胡君利,吴福勇,等.丛枝菌根真菌的抑病功能及其应用[J].应用与环境生物学报,2018,24(05):941-951.[doi:10.19675/j.cnki.1006-687x.2017.12018]
 HOU Shaowei,HU Junli,et al.The function and potential application of disease suppression by arbuscular mycorrhizal fungi[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):941-951.[doi:10.19675/j.cnki.1006-687x.2017.12018]
点击复制

丛枝菌根真菌的抑病功能及其应用()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年05期
页码:
941-951
栏目:
土壤微生物资源与生态专栏
出版日期:
2018-10-25

文章信息/Info

Title:
The function and potential application of disease suppression by arbuscular mycorrhizal fungi
作者:
侯劭炜胡君利吴福勇林先贵
1中国科学院南京土壤研究所,土壤与农业可持续发展国家重点实验室 南京 2100082西北农林科技大学资源环境学院,农业农村部西北植物营养与农业环境重点实验室 杨凌 712100 3中国科学院大学 北京 100049
Author(s):
HOU Shaowei1 2 HU Junli1 3** WU Fuyong2 & LIN Xiangui1
1 State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China2 Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China3 University of Chinese Academy of Sciences, Beiing 100049, China
关键词:
土传病害连作障碍丛枝菌根真菌抑病机制接种施肥
Keywords:
soil borne disease continuous cropping obstacle arbuscular mycorrhizal fungi disease suppression mechanism inoculation fertilization
分类号:
S154.36 : S432
DOI:
10.19675/j.cnki.1006-687x.2017.12018
摘要:
土传病害是引发连作障碍的关键因素,严重制约着我国集约化农业(特别是种植业)的可持续发展. 丛枝菌根(Arbuscular mycorrhizal,AM)真菌能够提高宿主抗病性、抑制病原物生长及侵染发病,是农业生产上防控土传病害的重要有益资源,探索其抑病机制和应用技术是近年来的研究热点,但一直缺乏比较系统的理论认识. 通过梳理相关研究进展发现,AM真菌主要在宿主根系、根际与植株等3个层面发挥抑病作用,其中根系防御主要包括AM真菌与病原物竞争生态位和构建机械防御屏障,根际防御主要包括调节根系分泌物与次生代谢产物及与拮抗菌协同抗病,而植株防御主要包括促进宿主对养分与水分的吸收和诱导宿主产生系统防御体系,因而提出AM真菌的“根系-根际-植株三级防御”理论. 在应用技术方面,着重分析通过接种AM真菌或调动土著AM真菌来防控土传病害的技术研究现状,并对应用中存在的问题及其发展前景进行展望,一方面可通过建立AM真菌种质资源库或构建转基因工程菌来解决接种有效期及效果稳定性等问题,另一方面可通过改变施肥模式和调整耕作制度来高效调动土著AM真菌的抑病活性,旨在为利用AM真菌防控土传病害、促进集约化种植业可持续发展提供理论依据. (图1 参157)
Abstract:
Soil-borne pathogens are among the key factors preventing continuous cropping, which severely restricts the sustainable development of intensive agriculture (notably plant industries) in China. Arbuscular mycorrhizal fungi (AMF), which can improve the disease resistance of their host plants and inhibit growth and infection by pathogens, are important beneficial resources that can prevent and/or control soil-borne diseases. Although the disease-suppression mechanisms and technological application of AMF have become hot topics for research in recent years, there is a relative lack of a systematic theoretical understanding of these topics. Based on a search and review of the relevant literature, the present study found that AMF act in disease suppression at three main points: in the root, the rhizosphere, and the plant. The root defense pathway of AMF involves niche competition and the construction of a physical defensive barrier against infection. The rhizosphere pathway involves the regulation of root exudates and secondary metabolites and the interaction with other antagonists. The plant pathway involves the improvement of nutrient and water uptake by AMF and the induction of the host’s systemic defenses. Therefore, a “three-level defense” theory of AMF is proposed, i.e. the root-rhizosphere-plant defense system. Based on current research on soil-borne disease suppression via inoculation with AMF or stimulating indigenous AMF, the problems and developmental prospects facing the application of AMF were also discussed. One approach that has been suggested to solve some of the problems association with the application of AMF, such as the limited term over which treatments remain effective and the low stability of their effects, is the establishment of a germplasm bank of AMF, or the construction of transgenic fungi. On the other hand, stimulating the disease suppression activity of indigenous AMF by changing fertilization patterns and/or the farming system used may also help to solve these problems. These efforts should be made to provide a theoretical basis for the exploiting of AMF for the prevention and control of soil-borne diseases, and the acceleration of the sustainable development of an intensive plant production industry in China.

参考文献/References:

1. 董小艳, 程智慧, 张亮. 百合根系分泌物对4种观赏植物的化感作用[J]. 西北农林科技大学学报(自然科学版), 2008, 36 (9): 113-117 [Dong XY, Cheng ZH, Zhang L. Allelopathy of lily root exudates on some receiver ornamental plants [J]. J NW A&F Univ (Nat Sci Ed), 2008, 36 (9): 113-117]
2. 黄春生, 熊明. 连作障碍的产生原因及改善途径[J]. 上海蔬菜, 2010 (5): 62-64 [Huang CS, Xiong M. Causes of continuous cropping obstacle and its improvement [J]. Shanghai Veg, 2010 (5): 62-64]
3. 胡海军, 吴亚男, 鄂洋, 高智席, 关晓溪, 张家臣. 设施园艺连作障碍研究进展[J]. 安徽农业科学, 2016 (5): 49-51 [Hu HJ, Wu YN, E Y, Gao ZX, Guan XX, Zhang JC. Research progress of continuous cropping obstacles in protected horticulture [J]. J Anhui Agric Sci, 2016 (5): 49-51]
4. 高群, 孟宪志, 于洪飞. 连作障碍原因分析及防治途径研究[J]. 山东农业科学, 2006 (3): 60-63 [Gao Q, Meng XZ, Yu HF. Reason analysis and control methods of succession cropping obstacle [J]. Shandong Agric Sci, 2006 (3): 60-63]
5. 孙光闻, 陈日远, 刘厚诚. 设施蔬菜连作障碍原因及防治措施[J]. 农业工程学报, 2005, 21 (14): 184-188 [Sun GW, Chen RY, Liu HC. Analysis of obstacle causes of greenhouse vegetable continuous cropping and prevention measures [J]. Trans Chin Soc Agric Eng, 2005, 21 (14): 184-188]
6. Larkin RP, Griffin TS. Control of soilborne potato diseases using Brassica green manures [J]. Crop Prot, 2007, 26 (7): 1067-1077
7. Jie W, Liu X, Cai B. Diversity of rhizosphere soil srbuscular mycorrhizal fungi in various soybean cultivars under different continuous cropping regimes [J]. PLoS ONE, 2013, 8 (8): 72-89
8. Wu HS, Yang XN, Fan JQ, Miao WG, Ling N. Suppression of Fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microorganisms [J]. BioControl, 2009, 54 (2): 287-300
9. 何飞飞. 设施番茄生产体系的氮素优化管理及其环境效应研究[D]. 北京: 中国农业大学, 2006 [He FF. Study on the optimal management of nitrogen and its environmental effects in the plant tomato production system [D]. Beijing: China Agricultural University, 2006]
10. Hua JF, Lin XG, Shen WS, Yin R, Feng YZ. Effects of land use history and inoculation with Fusarium oxysporum f. sp. cucumberinum on soil nematodes communities [J]. Helminthologia, 2008, 45 (4): 204-210
11. Shen WS, Lin XG, Gao N, Zhang HY, Yin R, Shi WM, Duan ZQ. Land use intensification affects soil microbial populations, functional diversity and related suppressiveness of cucumber Fusarium wilt in China’s Yangtze River Delta [J]. Plant Soil, 2008, 306 (1-2): 117-127
12. Xiao ER, Liang W, He F, Cheng SP, Wu ZB. Performance of the combined SMBR-IVCW system for wastewater treatment [J]. Desalination, 2010, 250 (2): 781-786
13. Desmond OJ, Edgar CI, Manners JM, Maclean DJ, Schenk PM. Methyl jasmonate induced gene expression in wheat delays symptom development by the crown rot pathogen Fusarium pseudograminearum [J]. Physiol Mol Plant Pathol, 2006, 67 (3-5): 171-179
14. Westphal A, Browne GT, Schneider S. Evidence for biological nature of the grape replant problem in California [J]. Plant Soil, 2002, 242 (2): 197-203
15. Kennedy AC, Smith KL. Soil microbial diversity and the sustainability of agricultural soils [J]. Plant Soil, 1995, 170 (1): 75-86
16. Willis A, Rodrigues BF, Harris PJC. The ecology of arbuscular mycorrhizal fungi [J]. Crit Rev Plant Sci, 2013, 32 (1): 1-20
17. 孙吉庆, 刘润进, 李敏. 丛枝菌根真菌提高植物抗逆性的效应及其机制研究进展[J]. 植物生理学报, 2012, 48 (9): 845-852 [Sun JQ, Liu RJ, Li M. Advances in the study of increasing plant stress resistance and mechanisms by arbuscular mycorrhizal fungi [J]. Plant Physiol Commun, 2012, 48 (9): 845-852]
18. Zhao M, Li M, Liu RJ. Effects of arbuscular mycorrhizae on microbial population and enzyme activity in replant soil used for watermelon production [J]. Inter J Eng Sci Technol, 2010, 2 (7): 17-22
19. Xun F, Xie B, Liu S, Guo C. Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation [J]. Environ Sci Pollut Res, 2015, 22 (1): 598-608
20. Hage-Ahmed K, Krammer J, Steinkellner S. The intercropping partner affects arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. lycopersici, interactions in tomato [J]. Mycorrhiza, 2013, 23 (7): 543-549
21. Lewandowski TJ, Dunfield KE, Antunes PM. Isolate identity determines plant tolerance to pathogen attack in assembled mycorrhizal communities [J]. PLoS ONE, 2013, 8 (4): 613-629
22. Sarfir GE. The influence of vesicular arbuscular mycorrhiza on the resistance of onion to Phyrenochacta terreations [D]. Urbana: University of Illinois, 1968
23. Schonbeck F, Dehne HW. Damage to mycorrhizal and non-mycorrhizal cotton seedlings by Thielaviopsis basicola [J]. Plant Dis Rep, 1977, 61 (4): 266-276
24. Trotta A, Zavaleta-Mej′?a E, Gonz′alez-Ch′avez C, Ferrara-Cerrato R. The use of arbuscular mycorrhizae to control onion white rot (Sclerotium cepivorum Berk.) under field conditions [J]. Mycorrhiza, 1996, 6 (4): 253-257
25. Lingua G, D’Agostino G, Massa N, Antosiano M, Berta G. Mycorrhiza-induced differential response to a yellows disease in tomato [J]. Mycorrhiza, 2002, 12 (4): 191-198
26. Hao ZP, Christie P, Qin L, Wang CX, Li XL. Control of Fusarium wilt of cucumber seedlings by inoculation with an arbuscular mycorrhizal fungus [J]. J Plant Nutr, 2005, 28 (11): 1961-1974
27. 李熙英, 崔东成, 黄世臣. AM菌对高山红景天植株生长及根腐病的影响[J]. 延边大学农学学报, 2013, 35 (2): 115-118 [Li XY, Cui DC, Huang SC. Effects of AM on growth and root rot of Rhodiola sachalinensis [J]. J Agric Sci Yanbian Univ, 2013, 35 (2): 115-118]
28. 弓明钦, 陈羽, 王凤珍. AM菌根化的两种桉树苗对青枯病的抗性研究[J]. 林业科学研究, 2004, 17 (4): 441-446 [Gong MQ, Chen Y, Wang FZ. Study on the resistance of two eucalyptus seedlings of AM mycorrhizal on bacterial wilt [J]. For Res, 2004, 17 (4): 441-446]
29. 贺忠群, 李焕秀, 汤浩茹. 丛枝菌根真菌对黄瓜立枯病的影响[J]. 四川农业大学学报, 2010, 28 (2): 200-204 [He ZQ, Li HX, Tang HR. Effect of arbuscular mycorrhizal fungi on cucumber rhizoctonia rot [J]. J Sichuan Agric Univ, 2010, 28 (2): 200-204]
30. Pozo MJ, Azcónaguilar C. Unraveling mycorrhiza-induced resistance [J]. Cur Opin Plant Biol, 2007, 10 (4): 393-398
31. Wu F, Wang X, Xue C. Effect of cinnamic acid on soil microbial characteristics in the cucumber rhizosphere [J]. Eur J Soil Biol, 2009, 45 (4): 356-362
32. Vigo C, Norman JR, Hooker JE. Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci [J]. Plant Pathol, 2000, 49 (4): 509-514
33. Tabin T, Arunachalam A, Shrivastava K, Arunachalam K. Effect of arbuscular mycorrhizal fungi on damping-off disease in Aquilaria agallocha Roxb. seedlings [J]. Trop Ecol, 2009, 50 (2): 243-248
34. Thygesen K, Larsen J, Bodker L. Arbuscular mycorrhizal fungi reduce development of pea root-rot caused by Aphanomyces euteiches, using oospores as pathogen inoculum [J]. Eur J Plant Pathol, 2004, 110 (4): 411-419
35. 邢颖, 张莘, 郝志鹏, 赵正雄, 于有志, 陈保冬. 烟草内生菌资源及其应用研究进展[J]. 微生物学通报, 2015, 42 (2): 411-419 [Xing Y, Zhang X, Hao ZP, Zhao ZX, Yu YZ, Chen BD. Biodiversity of endophytes in tobacco plants and their potential application a mini review [J]. Microbiol China, 2015, 42 (2): 411?419]
36. Liu RJ. Effect of vesicular-arbuscular mycorrhizal fungi on Verticillium wilt of cotton [J]. Mycorrhiza, 1995, 5 (4): 293-297
37. Merrild MP, Ambus P, Rosendahl S, Jakobsen I. Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants [J]. New Phytol, 2013, 200 (1): 229-240
38. Toljander JF. Interactions between soil bacteria and arbuscular mycorrhizal fungi [D]. Uppsala: Swedish University of Agricultural Sciences, 2006
39. 徐春美. 丛枝菌根真菌对牡丹根系构型的影响[J]. 山东林业科技, 2014 (4): 12-15 [Xu CM. Effects of arbuscular mycorrhizal fungi on root architecture of peony [J]. J Shandong For Sci Technol, 2014 (4): 12-15]
40. 罗巧玉, 王晓娟, 李媛媛, 林双双, 孙莉. AM真菌在植物病虫害生物防治中的作用机制[J]. 生态学报, 2013, 33 (19): 5997-6005 [Luo QY, Wang XJ, Li YY, Lin SS, Sun L. Mechanism of biological control to plant diseases using arbuscular mycorrhizal fungi [J]. Acta Ecol Sin, 2013, 33 (19): 5997-6005]
41. 崔卫东, 龙宣杞, 补娟, 杨蓉. 黄萎病原菌胁迫对丛枝菌根化棉花幼苗根部防御性酶及超微结构的影响[J]. 新疆农业科学, 2009, 46 (6): 1235-1244 [Cui WD, Long XQ, Bu J, Yang R. Effect of Verticillium wilt pathogen stress of cotton seedling root protective enzyme and ultrastructure of arbuscular mycorrhizal fungi [J]. Xinjiang Agric Sci, 2009, 46 (6): 1235-1244]
42. Fusconi A, Gnavi E, Trotta A, Berta G. Apical meristems of tomato roots and their modifications induced by arbuscular mycorrhizal and soilborne pathogenic fungi [J]. New Phytol, 1999, 142 (3): 505-516
43. Dassi B, Dumas GE Gianinazzi S. Different polypeptide profiles from tomato roots following interactions with arbuscular mycorrhizal (Glomus mosseae) or pathogenic (Phytophthora parasitica) fungi [J]. Aust J Plant Physiol, 1995, 22 (1): 87-99
44. 张晓玲, 潘振刚, 周晓锋, 倪吾钟. 自毒作用与连作障碍[J]. 土壤通报, 2007, 38 (4): 781-784 [Zhang XL, Pan ZG, Zhou XF, Ni WZ. Detoxification and continuous cropping obstacles [J]. Chin J Soil Sci, 2007, 38 (4): 781-784]
45. 王延平, 王华田. 植物根分泌的化感物质及其在土壤中的环境行为[J]. 土壤通报, 2010, 41 (2): 501-507 [Wang YP, Wang HT. Allelochemicals from roots exudation and its environment behavior in soil [J]. Chin J Soil Sci, 2010, 41 (2): 501-507]
46. 李贵菊. 日光温室连作障碍形成的原因及防治措施[J]. 河北农业, 2013 (3): 66-68 [Li GJ. Causes and control measures of continuous cropping obstacle in sunlight greenhouse [J]. Hebei Agric, 2013 (3): 66-68]
47. 董艳, 董坤, 杨智仙, 汤利, 郑毅. 肉桂酸加剧蚕豆枯萎病发生的根际微生物效应[J]. 园艺学报, 2016, 43 (8): 1525-1536 [Dong Y, Dong K, Yang ZX, Tang L, Zheng Y. Microbial impacts of Fusarium wilt promoted by cinnamic acid in the rhizosphere of vicia faba [J]. Acta Horticul Sin, 2016, 43 (8): 1525-1536]
48. Ren SZ, Mallik AU. Selected ectomycorrhizal fungi of black spruce (Picea mariana) can detoxify phenolic compounds of Kalmia angustifolia [J]. J Chem Ecol, 2006, 32 (7): 1473-1489
49. 马通, 李桂舫, 刘润进, 李敏. AM真菌对连作西瓜根内和根围土壤酚酸类物质和黄酮含量的影响[J]. 北方园艺, 2014 (8): 1-4 [Ma T, Li GF, Liu RJ, Li M. Effects of arbuscular mycorrhizal fungus on the content of phenolic acids and flavonoids in continuous clopping watermelon roots and rhizosphere soils [J]. Northern Horticul, 2014 (8): 1-4]
50. Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments [J]. Biotechnol Adv, 2014, 32 (2): 429-448
51. Rambelli A. The rhizosphere of mycorrhizae [M]//Marx DH, Kozlowski TT. Ectomycorrhizae: Their Ecology and Physiology. New York: Academic Press, 1973: 299-349
52. 宋培玲, 郝丽芬, 李欣州, 张键, 云晓鹏. 丛枝菌根真菌特性及其提高植物抗病性的研究进展[J]. 北方农业学报, 2013 (3): 84-85 [Song PL, Hao LF, Li XZ, Zhang J, Yun XP. The characteristics of arbuscular mycorrhizal fungi and improvement of plant disease resistance [J]. J Northern Agric, 2013 (3): 84-85]
53. 顾向阳, 胡正嘉. VA菌根真菌Glomus mosseae对棉花根区微生物量和生物量的影响[J]. 生态学杂志, 1994, 13 (2): 7-11 [Gu XY, Hu ZJ. Effects of VAM fungus Glomus mosseae on microbial population and biomass in cotton root zone [J]. Chin J Ecol, 1994, 13 (2): 7-11]
54. 朱红慧, 龙良坤, 羊宋贞, 姚青. AM真菌对青枯菌和根际细菌群落结构的影响[J]. 菌物学报, 2005, 24 (1): 137-142 [Zhu HH, Long LK, Yang SZ, Yao Q. Influence of AM fungus on Ralstonia solanacearum population and bacterial community structure in rhizosphere [J]. Mycosystema, 2005, 24 (1): 137-142]
55. Ortu G, Giuseppe R, Balestrini R, Becker JD, Küster H. Plant genes related to gibberellin biosynthesis and signaling are differentially regulated during the early stages of AM fungal interactions [J]. Mol Plant, 2012, 5 (4): 951-954
56. Cachinero JM, Cabello F, Jorrin J, Tena M. Induction of different chitinase and beta-1,3-glucanase isoenzymes in sunflower (Helianthus annuus L.) seedlings in response to infection by Plasmopara halstedii [J]. Eur J Plant Pathol, 1996, 102 (4): 401-405
57. Jaiti F, Meddich A, Hadrami IE. Effectiveness of arbuscular mycorrhizal fungi in the protection of date palm (Phoenix dactylifera L.) against bayoud disease [J]. Physiol Mol Plant Pathol, 2007, 71 (4-6): 166-173
58. Song YY, Cao M, Xie LJ, Liang XT, Zeng RS. Induction of DIMBOA accumulation and systemic defense responses as a mechanism of enhanced resistance of mycorrhizal corn (Zea mays L.) to sheath blight [J]. Mycorrhiza, 2011, 21 (8): 721-731
59. 李敏, 刘润进, 李晓林. 大田条件下丛枝菌根真菌对西瓜生长和枯萎病的影响[J]. 植物病理学报, 2004, 34 (5): 472-473 [Li M, Liu RJ, Li XL. Influences of arbuscular mycorrhizal fungi on growth and Fusarium wilt disease of watermelon in field [J]. Acta Phytopathol Sin, 2004, 34 (5): 472-473]
60. 补娟, 崔卫东, 罗明, 龙宣杞, 杨蓉. 接种丛枝菌根真菌对棉花生长和黄萎病的影响[J]. 新疆农业科学, 2009, 46 (3): 549-555 [Bu J, Cui WD, Luo M, Long XQ, Yang R. The effect of inoculation with AMF inoculum on growth and Verticillium wilt of cotton [J]. Xinjiang Agric Sci, 2009, 46 (3): 549-555]
61. Yao MK, Desilets H, Charles MT, Boulanger R, Tweddell RJ. Effect of mycorrhization on the accumulation of rishitin and solavetivone in potato plantlets challenged with Rhizoctonia solani [J]. Mycorrhiza, 2003, 13 (6): 333-336
62. Bodker L, Kjoller R, Rosendahl S. Effect of phosphate and the arbuscular mycorrhizal fungus Glomus intraradices, on disease severity of root rot of peas (Pisum sativum) caused by Aphanomyces euteiches. Mycorrhiza, 1998, 8 (3): 169-174
63. Kasiamdari RS, Smith SE, Smith FA, Scott ES. Influence of the mycorrhizal fungus, Glomus coronatum, and soil phosphorus on infection and disease caused by binucleate Rhizoctonia and Rhizoctonia solani on mung bean (Vigna radiata) [J]. Plant Soil, 2002, 238 (2): 235-244
64. 刘润进, 陈应龙. 菌根学[M]. 北京: 科学出版社, 2007 [Liu RJ, Chen YL. Mycorrhizology [M]. Beijing: Science Press, 2007]
65. Lópezráez JA, Verhage A, Fernández I, García JM, AzcónAguilar C. Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway [J]. J Exp Bot, 2010, 61 (10): 2589-2601
66. 董艳, 董坤, 杨智仙, 汤利, 郑毅. AM真菌控制蚕豆枯萎病发生的根际微生物效应[J]. 应用生态学报, 2016, 27 (12): 4029-4038 [Dong Y, Dong K, Yang ZX, Tang L, Zheng Y. Rhizosphere microbial impacts of alleviating faba bean Fusarium wilt with inoculating AM fungi [J]. Chin J Appl Ecol, 2016, 27 (12): 4029-4038]
67. Duponnois R, Plenchette C. A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species [J]. Mycorrhiza, 2003, 13 (2): 85-91
68. Hildebrandt U, Ouziad F, Marner FJ, Bothe H. The bacterium Paenibacillus validus, stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices, up to the formation of fertile spores [J]. FEMS Microbiol Lett, 2006, 254 (2): 258-267
69. Smith SE, Jakobsen I, Gronlund M, Smith FA. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interacyions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition [J]. Plant Physiol, 2011, 156 (3): 1050-1057
70. Harrier LA, Waston CA. The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems [J]. Pest Manage Sci, 2004, 60 (2): 149-157
71. Hodge A, Díaz SM. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling [J]. PNAS, 2010, 107 (31): 13754-13759
72. Laparre J, Malbreil M, Letisse F, Portais JC, Roux C. Combining metabolomics and gene expression analysis reveals that propionyl- and butyryl-carnitines are involved in late stages of arbuscular mycorrhizal symbiosis [J]. Mol Plant, 2014, 7 (3): 554-566
73. Marschner H, Dell B. Nutrient-Uptake in mycorrhizal symbiosis [J]. Plant Soil, 1994, 159 (1): 89-102
74. Cabral L, Giachini AJ, Siqueira JO. Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications [J]. World J Microb Biot, 2015, 31 (11): 1655-1664
75. 高萍, 李芳, 郭艳娥, 段廷玉. 丛枝菌根真菌和根瘤菌防控植物真菌病害的研究进展[J]. 草地学报, 2017, 25 (2): 236-242 [Gao P, Li F, Guo YE, Duan TY. Advances in AM fungi and rhizobium to control plant fungal diseases [J]. Acta Agrestia Sin, 2017, 25 (2): 236-242]
76. 贺忠群, 贺超兴, 张志斌, 邹志荣, 王怀松. 不同丛枝菌根真菌对番茄生长及相关生理因素的影响[J]. 沈阳农业大学学报, 2006, 37 (3): 308-312 [He ZQ, He CX, Zhang ZB, Zou ZR, Wang HS. Physiological study of tomato growth effects induced by different arbuscular mycorihizal fungus (AMF) strains [J]. J Shenyang Agric Univ, 2006, 37 (3): 308-312]
77. 王倡宪, 李晓林, 宋福强, 王贵强, 李北齐. 两种丛枝菌根真菌对黄瓜苗期枯萎病的防效及根系抗病相关酶活性的影响[J]. 中国生态农业学报, 2012, 20 (1): 53-57 [Wang CX, Li XL, Song FQ, Wang GQ, Li BQ. Effects of arbuscular mycorrhizal fungi on fusarium wilt and disease resistance-related enzyme activity in cucumber seedling root [J]. Chin J Eco-Agric, 2012, 20 (1): 53-57]
78. 贺学礼, 高露, 赵丽莉. 水分胁迫下丛枝菌根AM真菌对民勤绢蒿生长与抗旱性的影响[J]. 生态学报, 2011, 31 (4): 1029-1037 [He XL, Gao L, Zhao LL. Effects of AM fungi on the growth and drought resistance of Seriphidium minchünense under water stress [J]. Acta Ecol Sin, 2011, 31 (4): 1029-1037]
79. 王红新, 李富平, 国巧真. AM真菌生长发育影响因素及其对植物作用的研究[J]. 中国土壤与肥料, 2006 (1): 52-56 [Wang HX, Li FP, Guo QZ. The growth influence factor of AM and the function of it for the plants [J]. Soil Fert Sci Chin, 2006 (1): 52-56]
80. Prasad TK. Role of catalase in inducing chilling tolerance in pre-emergent maize seedlings [J]. Plant Physiol, 1997, 114 (4): 1369-1376

81. Gechev T, Willekens H, Montagu MV, Inzé D, Van Camp W. Different responses of tobacco antioxidant enzymes to light and chilling stress [J]. J Plant Physiol, 2003, 160 (5): 509-515</br>
82. 贺学礼, 刘媼, 安秀娟, 赵丽莉. 水分胁迫下AM真菌对柠条锦鸡儿(Caragana korshinskii)生长和抗旱性的影响[J]. 生态学报, 2009, 29 (1): 47-52 [He XL, Liu W, An XJ, Zhao LL. Effects of AM fungi on the growth and drought resistance of Caragana korshinskii under water stress condotions [J]. Acta Ecol Sin, 2009, 29 (1): 47-52]</br>
83. Espinosa F, Garrido I, Ortega A, Casimiro I, álvarezTinaut MC. Redox activities and ROS, NO and phenylpropanoids production by axenically cultured intact olive seedling roots after interaction with a mycorrhizal or a pathogenic fungus [J]. PLoS ONE, 2014, 9 (6): e100132</br>
84. 李坤. 葡萄连作障碍机理及调控途径的研究[D]. 沈阳: 沈阳农业大学, 2010 [Li K. Study on the mechanism and regulation of continuous cropping obstacle in grape [D]. Shenyang: Shenyang Agricultural University, 2010]</br>
85. Hause B, Mrosk C, Isayenkov S, Strack D. Jasmonates in arbuscular mycorrhizal interactions [J]. Phytochemistry, 2007, 38 (23): 101-110</br>
86. Fiorilli V, Catoni M, Francia D, Cardinale F, Lanfranco L. The arbuscular mycorrhizal symbiosis reduces disease severity in tomato plants infected by botrytis cinerea [J]. J Plant Pathol, 2011, 93 (1): 237-242</br>
87. Ei-Khallal SM. Induction and modulation of resistance in tomato plants against Fusarium wilt disease by bioagent fungi (arbuscular mycorrhiza) and/or hormonal elicitors (jasmonic acid & salicylic acid): 1-changes in growth, some metabolic activities and endogenous hormones related to defence mechanism [J]. Aus J Basic Appl Sci, 2007, 1 (4): 691-705</br>
88. Rupam K. Induced resistance in mycorrhizal tomato is correlated to concentration of jasmonic acid [J]. Online J Biol Sci, 2008, 8 (3): 49-56</br>
89. Ismail Y, Hijri M. Arbuscular mycorrhisation with glomus irregulare induces expression of potato PR homologues genes in response to infection by Fusarium sambucunum [J]. Funct Plant Biol, 2012, 39 (3): 236-245</br>
90. 张玉, 杨爱国, 冯全福. 植物病程相关蛋白及其在烟草中的研究进展[J]. 生物技术通报, 2012 (5): 20-24 [Zhang Y, Yang AG, Feng QF. Plant pathogenesis-related proteins and research progress in tobacco [J]. Biotechnol Bull, 2012 (5): 89-102]</br>
91. 周修腾, 王雪, 陈敏, 黄璐琦, 肖文娟, 杨光. 丛枝菌根真菌对丹参木质部结构及防御相关基因的影响[J]. 中国农学通报, 2017, 33 (4): 98-104 [Zhou XT, Wang X, Chen M, Huang LQ, Xiao WJ, Yang G. Effects of arbuscular mycorrhizal fungi on xylem structure and expression of defense related genes in Salvia miltiorrhiza [J]. Chin Agric Sci Bull, 2017, 33 (4): 98-104]</br>
92. 谢丽君, 宋圆圆, 曾任森, 王瑞龙, 魏晓晨. 丛枝菌根菌丝桥介导的番茄植株根系间抗病信号的传递[J]. 应用生态学报, 2012, 23 (5): 1145-1152 [Xie LJ, Song YY, Ceng RS, Wang RL, Wei XC. Disease resistance signal transfer between roots of different tomato plants through common arbuscular mycorrhizal networks [J]. Chin J Appl Ecol, 2012, 23 (5): 1145-1152]</br>
93. Mora-Romero GA, Cervantes-Gámez RG, Galindo-Flores H, González-Ortíz MA, Félix-Gastélum R, Maldonado-Mendoza IE, Pérez RS, León-Félix J, Martínez-Valenzuela MC, López-Meyer M. Mycorrhiza-induced protection against pathogens is both genotype-specific and graft-transmissible [J]. Symbiosis, 2015, 66 (2): 55-64</br>
94. 乐仲发. 土著及外源丛枝菌根真菌对三叶赤楠生长效应的研究[D]. 南昌: 江西农业大学, 2015 [Le ZF. Study on the effect of indigenous and exogenous arbuscular mycorrhizal fungi on the growth syzygium grijsii [D]. Nanchang: Jiangxi Agricultural University, 2015]</br>
95. Miller RL, Jackson LE. Survey of vesicular-arbuscular mycorrhizae in lettuce production in relation to management and soil factors. J Agric Sci, 1998, 130 (130): 173-182</br>
96. 田慧, 盖京苹, 李晓林, 张俊伶. 农田土著丛枝菌根真菌群落特征和磷吸收作用研究进展[J]. 土壤通报, 2013, 44 (6): 1512-1519 [Tian H, Gai JP, Li XL, Zhang JL. Community composition and phosphorus uptake by indigenous arbuscular mycorrhizal fungi in agroecosystems [J]. Chin J Soil Sci, 2013, 44 (6): 1512-1519]</br>
97. 王倡宪, 郝志鹏. 丛枝菌根真菌对黄瓜枯萎病的影响[J]. 菌物学报, 2008, 27 (3): 395-404 [Wang CX, Hao ZP. Effects of arbuscular mycorrhizal fungi on Fusarium wilt of cucumber seedlings [J]. Mycosystema, 2008, 27 (3): 395-404]</br>
98. Ren LX, Zhang N, Wu P, Huo H, Xu G. Arbuscular mycorrhizal colonization alleviates Fusarium wilt in watermelon and modulates the composition of root exudates [J]. Plant Growth Regul, 2015, 77 (1): 77-85</br>
99. 江龙, 王智明, 张长华, 黄建国, 袁玲. 菌根烟苗的抗青枯病效应研究[J]. 中国烟草学报, 2009, 15 (6): 49-52 [Jiang L, Wang ZM, Zhang CH, Huang JG, Yuan L. Research on wilt disease resistance of AM mycorrhizal tobacco seedlings [J]. Acta Tabac Sin, 2009, 15 (6): 49-52]</br>
100. Ren LX, Lou YS, Inubushi, K, Sakamoto K, Amemiya Y. Effects of arbuscular mycorrhizal colonization on microbial community in rhizosphere soil and Fusarium wilt disease in tomato [J]. Commun Soil Sci Plant Anal, 2010, 41 (11): 1399-1410</br>
101. 张焕仕, 钦佩, 潘少明, 贺学礼. 非灭菌土接种AM真菌对油蒿抗旱性的影响[J]. 北方园艺, 2012 (2): 1-5 [Zhang HS, Qing P, Pan SM, He XL. Effects of AM fungi on drought tolerance of Artemisia annua in unsterilized soil [J]. Northern Horticult, 2012 (2): 1-5]</br>
102. Jakobsen I, Gazey C, Abbott LK. Phosphate transport by communities of arbuscular mycorrhizal fungi in intact soil cores [J]. New Phytol, 2001, 149 (1): 95-103</br>
103. Daft MJ. The influence of mixed inocula on endomycorrhizal development [J]. Plant Soil, 1983, 71 (1-3): 331-337</br>
104. Daft MJ, Hogarth BG. Competitive interactions amongst four species of Glomus on maize and onion [J]. Trans Brit Mycol Soc, 1983, 80 (2): 339-345</br>
105. Hu JL, Lin XG, Wang JH, Shen WS, Wu S, Peng SP, Mao TT. Arbuscular mycorrhizal fungal inoculation enhances suppression of cucumber Fusarium wilt in greenhouse soils [J]. Pedosphere, 2010, 20 (5): 586-593</br>
106. 龙良鲲, 黎志坤, 姚青, 王燕, 朱红惠. 番茄菌根化育苗及对青枯病的防治试验[J]. 中国蔬菜, 2009, 1 (4): 52-55 [Long LK, Li ZK, Yao Q, Wang Y, Zhu HH. Tomato seedling culture by inoculating arbuscular mycorrhizal fungi and Ralstonia solanacearum control [J]. China Veg, 2009, 1 (4): 52-55]</br>
107. Ashok S, Keerti D, Deepak V, Jha A. Interactions between arbuscular mycorrhizae and Fusarium oxysporum f. sp. ciceris: effects on fungal development, seedling growth and wilt disease suppression in cicer arietinum L [J]. Arch Phytopath Plant Prot, 2015, 48 (3): 240-252</br>
108. Barea JM, Azcón-Aguilar C. Microbial co-operation in the rhizosphere [J]. J Exp Bot, 2005, 56 (417): 1761-1778</br>
109. Behn O. Influence of Pseudomonas fluorescens, and arbuscular mycorrhiza on the growth, yield, quality and resistance of wheat infected with Gaeumannomyces graminis [J]. J Plant Dis Prot, 2008, 115 (1): 4-8</br>
110. Akkopru A, Demir S. Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria [J]. J Phytopathol, 2005, 153 (9): 544-550</br>
111. Berta G, Copetta A, Gamalero E, Bona E, Cesaro P. Maize development and grain quality are differentially affected by mycorrhizal fungi and a growth-promoting pseudomonad in the field [J]. Mycorrhiza, 2014, 24 (3): 161-170</br>
112. Larsen J, Cornejo P, Barea JM. Interactions between the arbuscular mycorrhizal fungus Glomus intraradices and the plant growth promoting rhizobacteria Paenibacillus polymyxa and P. macerans in the mycorrhizosphere of Cucumis sativus [J]. Soil Biol Biochem, 2009, 41 (2): 286-292</br>
113. 刘东岳, 李敏, 孙文献, 刘润进. 抗黄瓜枯萎病丛枝菌根真菌与根围促生细菌组合菌剂的筛选[J]. 植物病理学报, 2016, 46 (6): 821-832 [Liu DY, Li M, Sui WX, Liu RJ. Selection of combinations of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria against cucumber Fusarium wilt disease [J]. Acta Phytopathol Sin, 2016, 46 (6): 821-832]</br>
114. Vestberg M, Kukkonen S, Saari K, Parikka P, Huttunen J. Microbial inoculation for improving the growth and health of micropropagated strawberry [J]. Appl Soil Ecol, 2004, 27 (3): 243-258</br>
115. Liu R, Dai M, Wu X, Li M, Liu X. Suppression of the root-knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] on tomato by dual inoculation with arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria [J]. Mycorrhiza, 2012, 22 (4):289-296</br>
116. Sharma IP, Sharma AK. Physiological and biochemical changes in tomato cultivar PT-3 with dual inoculation of mycorrhiza and PGPR against root-knot nematode. Symbiosis, 2017, 71 (3): 175-183</br>
117. Armada E, Probanza A, Roldán A. Native plant grow th promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in lavan-dula dentata plants [J]. J Plant Physiol, 2016, 192: 1-12</br>
118. Velivelli SLS, Lojan P, Cranenbrouck S. The induction of ethylene response factor 3 (ERF3) in potato as a result of coinoculation with Pseudomonas sp. R41805 and Rhizophagus irregularis MUCL 41833-a possible role in plant defense [J]. Plant Sign Behav, 2015, 10 (2): 976-988</br>
119. Alizadeh H, Behboudi K, Ahmadzadeh M, Javan-Nikkhahet M. Induced systemic resistance in cucumber and Arabidopsis thaliana, by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14 [J]. BioControl, 2013, 65 (1): 14-23</br>
120. 刘润进. 菌根真菌是唱响生物共生交响曲的主角[J]. 菌物学报, 2017, 36 (7): 791-799 [Liu RJ. Mycorrhizal fungi are the main factor of singing bilogical symbiois symphony [J]. Mycosystema, 2017, 36 (7): 791-799]</br>
121. Smith SE, Read DJ. Mycorrhizal Symbiosis [M]. 3rd ed. London: Academic Press,? 2008</br>
122. Eom AH, Hartnett DC, Wilson GWT. Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie [J]. Oecologia, 2000, 122 (3): 435-444</br>
123. Cui X, Hu J, Wang J, Yang J, Lin X. Reclamation negatively influences arbuscular mycorrhizal fungal community structure and diversity in coastal saline-alkaline land in eastern China as revealed by Illumina sequencing [J]. Appl Soil Ecol, 2016, 98: 140-149</br>
124. Hu JL, Yang AN, Wang JH, Zhu AN, Dai J, Wong MH, Lin XG. Arbuscular mycorrhizal fungal species composition, propagule density, and soil alkaline phosphatase activity in response to continuous and alternate no-tillage in northern China [J]. Catena, 2015, 133: 215-220</br>
125. Dai J, Hu JL, Zhu AN, Bai JF. No tillage enhances arbuscular mycorrhizal fungal population, glomalin-related soil protein content, and organic carbon accumulation in soil macroaggregates [J]. J Soil Sediment, 2015, 15 (5): 1055-1062</br>
126. Wu JH, Shen WS, Lin LM, Greenes RA, Bates DW. Testing the technology acceptance model for evaluating healthcare professionals’ intention to use an adverse event reporting system [J]. Int J Qual Health Care, 2008, 20 (2): 123-129</br>
127. Bainard LD, Klironomos JN, Gordon AM. Arbuscular mycorrhizal fungi in tree-based intercropping systems: a review of their abundance and diversity [J]. Pedobiologia, 2011, 54 (2): 57-61</br>
128. 马琨, 杨桂丽, 马玲, 汪春明, 魏常慧, 代晓华. 间作栽培对连作马铃薯根际土壤微生物群落的影响[J]. 生态学报, 2016, 36 (10): 2987-2995 [Ma K, Yang GL, Ma L, Wang CM, Wei CH, Dai XH. Effects of intercropping on soil microbial communities after long-term potato monoculture [J]. Acta Ecol Sin, 2016, 36 (10): 2987-2995]</br>
129. Bainard LD, Klironomos JN, Gordon AM. Arbuscular my-corrhizal fungi in tree-based intercropping systems: a reviewof their abundance and diversity [J]. Pedobiologia, 2011, 54 (2): 57-61</br>
130. 魏常慧. 马铃薯间、套作栽培对连作土壤与作物的影响[D]. 银川: 宁夏大学, 2016 [Wei CH. Effects of intercropping and intercropping on soil and crops in continuous cropping [D]. Yinchuan: Ningxia University, 2016]</br>
131. 刘俭, 曲继松, 张丽娟, 冯海萍, 杨冬艳. 宁夏旱作区域露地西瓜套作栽培适应性研究[J]. 长江蔬菜, 2012 (20): 49-51 [Liu J, Qu JS, Zhang LJ, Feng HP, Yang DY. Adaptability of watermelon intercropping cultivation in open fields in arid area of Ningxia [J]. J Changjiang Veg, 2012 (20): 49-51]</br>
132. 董鲜, 郑青松, 王敏, 周金燕, 沈其荣. 铵态氮和硝态氮对香蕉枯萎病发生的比较研究[J]. 植物病理学报, 2015, 45 (1): 73-79 [Dong X, Zheng QS, Wang M, Zhou JY, Shen QR. Comparative study of ammonium and nitrate on banana wilt disease development [J]. Acta Phytopathol Sin, 2015, 45 (1): 73-79]</br>
133. M?der P, Edenhofer S, Boller T. Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation [J]. Biol Fertil Soils, 2000, 31 (2): 150-156</br>
134. Thomson BD, Robson AD, Abbott LK. Soil mediated effects of phosphorus supply on the formation of mycorrhizas by Scutellispora calospora (Nicol. & Gerd.) Walker & Sanders on subterranean clover [J]. New Phytol, 2010, 118 (3): 463-469</br>
135. Kahiluoto H, Ketoja E, Vestberg M, Saarela I. Promotion of AM utilization through reduced P fertilization 2. Field studies [J]. Plant Soil, 2001, 231 (1): 65-79</br>
136. Martensson AM, Carlgren K. Impact of phosphorus fertilization on VAM diaspores in two Swedish long-term field experiment [J]. Agric Ecosyst Environ, 1994, 47 (4): 327-334</br>
137. 郭涛, 申鸿, 彭思利, 黄建国. 氮、磷供给水平对丛枝菌根真菌生长发育的影响[J]. 植物营养与肥料学报, 2009, 15 (3): 690-695 [Guo T, Shen H, Peng SL, Huang JG. Influence of nitrogen and phosphorus supplying levels on development of arbuscular mycorrhizal fungi [J]. J Plant Nutr Fertil, 2009, 15 (3): 690-695]</br>
138. 刘佳. 长期施肥对农田土壤丛枝菌根真菌生物多样性及群落结构的影响[D]. 兰州: 兰州大学, 2009 [Liu J. Effects of long term fertilization on the diversity and community structure of arbuscular mycorrhizal fungi in Northwest China [D]. Lanzhou: Lanzhou University, 2009]</br>
139. 林先贵, 胡君利, 戴珏, 王发园, 冯有智. 丛枝菌根真菌群落结构与多样性研究方法概述及实例比较[J]. 应用与环境生物学报, 2017, 23 (2): 343-350 [Lin XG, Hu JL, Dai J, Wang FY, Feng YZ. Overview and comparison of research methods for determining the community structure and diversity of arbuscular mycorrhizal fungi [J]. Chin J Appl Environ Biol, 2017, 23 (2): 343-350]</br>
140. Johnson NC. Can fertilization of soil select less mutualistic mycorrhizae [J]? Ecol Applic, 1993, 3 (4): 749-757</br>
141. Wang MY, Hu LB, Wang WH, Liu ST, Li M, Liu RJ. Influence of long term fixed fertilization on diversity of arbuscular mycorrhizal fung [J]. Pedosphere, 2009, 19 (5): 663-672</br>
142. Beauregard MS, Hamel C, Atul-Nayyar, St-Arnaud M. Long term phosphorus fertilization impacts soil fungaland bacterial diversity but not AM fungal community in alfalfa [J]. Microb Ecol, 2010, 59 (2): 379-389</br>
143. keitaro T, Ryouta H, Tadao W. Inoculation of arbuscular fungi can substantially reduce phophate fertilizer application to Allium fistulosum L. and achieve marketable yield under field condition [J]. Biol Fertil Soils, 2012, 48 (7): 839-843</br>
144. 赵慧敏. 丛枝菌根生理生态学研究进展[J]. 安徽农业科学, 2009, 37 (4): 1460-1462 [Zhao HM. Research progress on eco-physiological responses of arbuscular mycorrhizal [J]. J Anhui Agric Sci, 2009, 37 (4): 1460-1462]</br>
145. 李晓林, 冯固. 丛枝菌根生态生理. 北京: 华文出版社, 2001 [Li XL, Feng G. Eco-phisiology of Arbuscular Mycorrhiza. Beijing: Sino-Culture Press, 2001]</br>
146. 赵方贵, 刘广富, 管志坤, 朱柱峰, 刘广玉. 土壤根际环境对烟草AM真菌定殖率和孢子密度的影响[J]. 安徽农业科学, 2012 (7): 4220-4221 [Zhao FG, Liu GF, Guan ZK, Zhu ZF, Liu GY. Influence of soil chemical and physical properties on AM fungi infections and spore density of tobacco in Shandong [J]. J Anhui Agric Sci, 2012 (7): 4220-4221] </br>
147. 袁飞, 彭宇, 张春兰. 有机物料减轻设施连作黄瓜苗期病害的微生物效应[J]. 应用生态学报, 2004, 15 (5): 867-870 [Yuan F, Peng Y, Zhang CL. Microbial effects of organic material mitigation facilities continuous cropping on cucumber seedling disease [J]. Chin J Appl Ecol, 2004, 15 (5): 867-870]</br>
148. 李军营, 邓小鹏, 杨坤. 施用有机肥对植烟土壤理化性质的影响[J]. 中国土壤与肥料, 2012 (3): 12-16 [Li JY, Deng XP, Yang K. Effects of application of organic fertilizer on the physical and chemical properties of tobacco planting soil [J]. Soil Fertil Sci China, 2012 (3): 12-16]</br>
149. 李灵芝, 行园园, 盖京苹, 王艳芳, 李海平. 不同氮肥及有机肥投入对设施番茄菜地AM真菌侵染势和空间分布的影响[J]. 中国蔬菜, 2015, 1 (4): 49-53 [Li LZ, Hang YY, Gai JP, Wang YF, Li HP. Effects of different nitrogen and organic manure application on infection potential and spatial distribution of arbuscular mycorrhizal fungi in greenhouse tamato cropping system [J]. China Veg, 2015, 1 (4): 49-53] </br>
150. Wang MY, Hu LB, Wang WH. Influence of long-term fixed fertilization on diversity of arbuscular mycorrhizalfungi [J]. Pedosphere, 2009, 19 (5): 663-672</br>
151. Hodge A, Campbell CD, Fitter AH. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material [J]. Nature, 2001, 413 (6853): 297-299</br>
152. Verma RK, Arya ID. Effect of arbuscular mycorrhizal fungal isolates and organic manure on growth and mycorrhization of micropropagated Dendrocalamus asper, plantlets and on spore production in their rhizosphere [J]. Mycorrhiza, 1998, 8 (2): 113-116</br>
153. He XL, Steinberger Y, Herman P. Dynamics on arbuscular mycorrhizal fungi under the canopy of desert shrubs [J]. J NW A&F Univ Nat Sci, 2001, 29 (4): 24-28</br>
154. Dai J, Hu JL, Lin XG, Yang AN. Arbuscular mycorrhizal fungal diversity, external mycelium length, and glomalin-related soil protein content in response to long-term fertilizer management [J]. J Soil Sediment, 2013, 13 (1): 1-11</br>
155. Hu J, Lin X, Wang J, Chu H, Yin R, Zhang J. Population size and specific potential of P-mineralizing and -solubilizing bacteria under long-term P-deficiency fertilization in a sandy loam soil [J]. Pedobiologia, 2009, 53 (1): 49-58</br>
156. 张贵云. 不同农业措施对丛枝菌根真菌群落结构和侵染效应的影响[D]. 南京: 南京农业大学, 2013 [Zhang GY. Effects of different agicultural measures on the community structure and infection effect of arbuscular mycorrhizal fungi [D]. Nanjing: Nanjing Agricultural University, 2013]</br>
157. Khaosaad T, García-Garrido JM, Steinkellner S, Vierheilig H. Take-all disease is systemically reduced in roots of mycorrhizal barley plants [J]. Soil Biol Biochem, 2007, 39 (3): 727-734</br>
"

更新日期/Last Update: 2018-10-25