1 Hai Z, Appenroth K, Landesman L, Salmeán AA, Lam E. Duckweed rising at Chengdu: summary of the 1st international conference on duckweed application and research [J]. Plant Mol Biol, 2012, 78 (6): 627-632 2 Lam E, Appenroth KJ, Michael T, Mori K, Fakhoorian T. Duckweed in bloom: the 2nd international conference on duckweed research and applications heralds the return of a plant model for plant biology [J]. Plant Mol Biol, 2014, 84 (6): 737-742 3 Appenroth KJ, Sree KS, Fakhoorian T, Lam E. Resurgence of duckweed research and applications: report from the 3rd international duckweed conference [J]. Plant Mol Biol, 2015, 89 (6): 647 4 Blazey EB, McClure JW. The distribution and taxonomic significance of lignin in the Lemnaceae [J]. Am J Bot, 1968: 1240-1245 5 Tao X, Fang Y, Huang M-J, Xiao Y, Liu Y, Ma X-R, Zhao H. High flavonoid accompanied with high starch accumulation triggered by nutrient starvation in bioenergy crop duckweed (Landoltia punctata) [J]. BMC Gen, 2017, 18 (1): 166 6 唐利萍, 方扬, 靳艳玲, 陈夏媛, 赵海. 重金属镉超富集浮萍品种筛选及其对水体中镉的去除效果[J]. 应用与环境生物学报, 2015, 21 (5): 830-836 [Tang LP, Fang Y, Jin YL, Chen XY, Zhao H. Preliminary study on screening of cadmium hyperaccumulator duckweed strain and removal of cadmium in water [J]. Chin J Appl Environ Biol, 2015, 21 (5): 830-836] 7 Tao X, Fang Y, Xiao Y, Jin YL, Ma XR, Zhao Y, He KZ, Zhao H, Wang HY. Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation [J]. Biotechnol Biofuels, 2013, 6 (1): 72 8 Singh KB, Foley RC, O?ate-Sánchez L. Transcription factors in plant defense and stress responses [J]. Cur Opin Plant Biol, 2002, 5 (5): 430-436 9 Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Sch?lkopf B, Weigel D, Lohmann JU. A gene expression map of Arabidopsis thaliana development [J]. Nat genet, 2005, 37 (5): 501-506 10 Hillman WS, Culley DD. The uses of duckweed: the rapid growth, nutritional value, and high biomass productivity of these floating plants suggest their use in water treatment, as feed crops, and in energy-efficient farming [J]. Am Sci, 1978, 66 (4): 442-451 11 Docauer D. A nutrient basis for the distribution of the Lemnaceae [J]. Dissert Abs Inter, B (Sci Eng), 1983, 44 (6): 1705-1706 12 Kielak E, Sempruch C, Mioduszewska H, Klocek J, Leszczyński B. Phytotoxicity of roundup ultra 360 SL in aquatic ecosystems: biochemical evaluation with duckweed (Lemna minor L.) as a model plant [J]. Pest Biochem Physiol, 2011, 99 (3): 237-243 13 Li W, Liu Q, Xiong Y, Wang S, Wang N, Wang Y. Significant role of cytokinins in maintaining the life of fronds in Spirodela polyrrhiza [J]. J Plant Physiol Mol Biol, 2002, 29 (3): 215-220 14 Pérezrodríguez P, Corrêa LGG, Rensing SA, Kersten B, Muellerroeber B. PlnTFDB: updated content and new features of the plant transcription factor database [J]. Nuc Acids Res, 2010, 38 (Database issue): 822-827 15 Yilmaz A, Mejia-Guerra MK, Kurz K, Liang X, Welch L, Grotewold E. AGRIS: the arabidopsis gene regulatory information server, an update [J]. Nuc Acids Res, 2011, 39 (Suppl1): D1118-D1122 16 Dai X, Sinharoy S, Udvardi M, Zhao PX. PlantTFcat: an online plant transcription factor and transcriptional regulator categorization and analysis tool [J]. BMC Bioinform, 2013, 14 (1): 321 17 Jin J, Tian F, Yang D-C, Meng Y-Q, Kong L, Luo J, Gao G. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants [J]. Nuc Acids Res, 2017, 45 (D1): D1040-D1045 18 Zheng Y, Jiao C, Sun H, Rosli HG, Pombo MA, Zhang P, Banf M, Dai X, Martin GB, Giovannoni JJ. iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases [J]. Mol Plant, 2016, 9 (12): 1667 19 Hoagland DR, Arnon DI. The water-culture method for growing plants without soil [J]. Circ California Agric Exp Stat, 1950, 347 (2nd ed) 20 Andrews S. FastQC: a quality control tool for high throughput sequence data [R]. 2010 21 Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements [J]. Nat Methods, 2015, 12 (4): 357-360 22 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools [J]. Bioinformatics, 2009, 25 (16): 2078-2079 23 Anders S, Pyl PT, Huber W. HTSeq–a python framework to work with high-throughput sequencing data [J]. Bioinformatics, 2014: btu638 24 Wang L, Feng Z, Wang X, Wang X, Zhang X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data [J]. Bioinformatics, 2010, 26 (1): 136-138 25 Zik M, Irish VF. Flower development: initiation, differentiation, and diversification [J]. Ann Rev Cell Dev Biol, 2003, 19 (1): 119-140 26 Puranik S, Sahu PP, Srivastava PS, Prasad M. NAC proteins: regulation and role in stress tolerance [J]. Tre plant sci, 2012, 17 (6): 369-381 27 Ko JH, Yang SH, Park AH, Lerouxel O, Han KH. ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana [J]. Plant J, 2007, 50 (6): 1035-1048 28 Zhong R, Lee C, Ye ZH. Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis [J]. Mol Plant, 2010, 3 (6): 1087-1103 29 Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis [J]. Plant Cell, 2008, 20 (10): 2763-2782 30 Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis [J]. Plant Cell, 2007, 19 (1): 270-280 31 Grant EH, Fujino T, Beers EP, Brunner AM. Characterization of NAC domain transcription factors implicated in control of vascular cell differentiation in Arabidopsis and Populus [J]. Planta, 2010, 232 (2): 337-352 32 Maeda H, Dudareva N. The shikimate pathway and aromatic amino acid biosynthesis in plants [J]. Ann Rev Plant Biol, 2012, 63: 73-105 33 Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis [J]. Trends Plant Sci, 2010, 15 (10): 573-581
[1]王琦琳,牛向丽,刘永胜.玉米两个功能未知转录因子基因的转录后加工[J].应用与环境生物学报,2009,15(04):483.[doi:10.3724/SP.J.1145.2009.00483]
WANG Qilin,NIU Xiangli,LIU Yongsheng.Post-transcriptional Processing of Two Functions of Unknown Transcription Factor Genes in Zea mays[J].Chinese Journal of Applied & Environmental Biology,2009,15(01):483.[doi:10.3724/SP.J.1145.2009.00483]
[2]李伟,韩蕾,钱永强,等.植物NAC转录因子的种类、特征及功能[J].应用与环境生物学报,2011,17(04):596.[doi:10.3724/SP.J.1145.2011.00596]
LI Wei,HAN Lei,QIAN Yongqiang,et al.Characteristics and Functions of NAC Transcription Factors in Plants[J].Chinese Journal of Applied & Environmental Biology,2011,17(01):596.[doi:10.3724/SP.J.1145.2011.00596]
[3]黄胜雄,刘永胜.土豆WRKY转录因子家族的生物信息学分析[J].应用与环境生物学报,2013,19(02):205.[doi:10.3724/SP.J.1145.2013.00205]
HUANG Shengxiong,LIU Yongsheng.Genome-wide Analysis of WRKY Transcription Factors in Solanum tuberosum[J].Chinese Journal of Applied & Environmental Biology,2013,19(01):205.[doi:10.3724/SP.J.1145.2013.00205]
[4]朱芸晔,薛冰,王安全,等.番茄bZIP转录因子家族的生物信息学分析[J].应用与环境生物学报,2014,20(05):767.[doi:10.3724/SP.J.1145.2014.01033]
ZHU Yunye,XUE Bing,WANG Anquan,et al.Comprehensive bioinformatic analysis of bZIP transcription factors in Solanum lycopersicum[J].Chinese Journal of Applied & Environmental Biology,2014,20(01):767.[doi:10.3724/SP.J.1145.2014.01033]
[5]丁彦强,方扬,靳艳玲,等.基于叶绿体基因组的浮萍亚科系统进化[J].应用与环境生物学报,2017,23(02):215.[doi:10.3724/SP.J.1145.2016.04036]
DING Yanqiang,FANG Yang,et al.Systematic evolution of Lemnoideae determined based on chloroplast genome analysis[J].Chinese Journal of Applied & Environmental Biology,2017,23(01):215.[doi:10.3724/SP.J.1145.2016.04036]
[6]李倩倩,王燕,诸葛斌,等.产甘油假丝酵母抗逆转录因子的过表达对酿酒酵母耐酸胁迫性的影响[J].应用与环境生物学报,2017,23(06):1006.[doi:10.3724/SP.J.1145.2017.01031]
LI Qianqian,WANG Yan,et al.Effect of overexpressing transcription factors of Candida glycerinogenes on acid tolerance of Saccharomyces cerevisiae[J].Chinese Journal of Applied & Environmental Biology,2017,23(01):1006.[doi:10.3724/SP.J.1145.2017.01031]
[7]李琪,方扬,许亚良,等.少根紫萍对微污染地表水的净化及淀粉积累能力[J].应用与环境生物学报,2018,24(06):1324.[doi:10.19675/j.cnki.1006-687x.2018.02023]
LI Qi,et al..Duckweed Landoltia punctata purifies micro-polluted surface water and produces starch[J].Chinese Journal of Applied & Environmental Biology,2018,24(01):1324.[doi:10.19675/j.cnki.1006-687x.2018.02023]
[8]王明秀,栾威,马欣荣,等.少根紫萍淀粉合成关键基因对寡营养胁迫的响应[J].应用与环境生物学报,2019,25(01):128.[doi:10.19675/j.cnki.1006-687x.2018.04021]
WANG Mingxiu,LUAN Wei,et al.Responses of starch biosynthesis-related genes to nutrition starvation in Landoltia punctata[J].Chinese Journal of Applied & Environmental Biology,2019,25(01):128.[doi:10.19675/j.cnki.1006-687x.2018.04021]
[9]吴华彰,洪运,池宇欣,等.转录因子ATF-7参与调控氧化石墨烯(GO)对秀丽线虫的致毒效应[J].应用与环境生物学报,2019,25(02):339.[doi:10.19675/j.cnki.1006-687x.2018.11015]
WU Huazhang,HONG Yun,CHI Yuxin & ZHAO yunli**.Regulation effect of the transcription factor ATF-7 on the GO toxicity in Caenorhabditis elegans[J].Chinese Journal of Applied & Environmental Biology,2019,25(01):339.[doi:10.19675/j.cnki.1006-687x.2018.11015]
[10]古袁扬,乐露,马欣荣,等.番茄SlNAC1基因启动子的盐应答功能分析[J].应用与环境生物学报,2021,27(04):988.[doi:10.19675/j.cnki.1006-687x.2020.03022]
GU Yuanyang,YUE Lu,et al.Salt response analysis of tomato SlNAC1 promoter[J].Chinese Journal of Applied & Environmental Biology,2021,27(01):988.[doi:10.19675/j.cnki.1006-687x.2020.03022]