|本期目录/Table of Contents|

[1]李志丹,方扬,靳艳玲,等.少根紫萍转录因子及其营养胁迫下的表达[J].应用与环境生物学报,2018,24(01):97-101.[doi: 10.19675/j.cnki.1006-687x.2017.04015]
 LI Zhidan,FANG Yang,et al.Transcription factors and their expression in $Landoltia punctata$ under nutrient starvation[J].Chinese Journal of Applied & Environmental Biology,2018,24(01):97-101.[doi: 10.19675/j.cnki.1006-687x.2017.04015]





Transcription factors and their expression in $Landoltia punctata$ under nutrient starvation
1中国科学院环境与应用微生物重点实验室 成都 610041 2中国科学院成都生物研究所 成都 610041 3中国科学院大学 北京 100049 4四川省自然资源科学研究院 成都 610041
LI Zhidan FANG YangJIN YanlingDING Yanqiang HE KaizeLI Yan WANG QiongyaoZHAO Hai**
1 Key Laboratory of Environment and Applied Microbiology, Chinese Academy of Sciences, Chengdu 610041, China 2 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 3 University of Chinese Academy of Sciences, Beijing 100049, China 4 Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610041, China
Landoltia punctata transcription factor nutrient starvation transcriptome
Q78 : Q945.79
少根紫萍(Landoltia punctata)是一种浮水生、多功能、高环境适应能力的能源植物,为了解其生理特性的分子机制,利用少根紫萍转录因子预测数据与拟南芥、水稻、玉米数据库数据进行宏观比较,并结合转录组测序技术对少根紫萍营养胁迫后转录因子表达分析. 结果显示,少根紫萍有1 076个转录因子,分属于66个家族,其中在bZIP、WRKY、AP2/ERF-ERF、MYB、NAC、MADS-box等家族基因数明显减少,一定程度上解释了浮萍高黄铜低木质素、难开花的生理特性;少根紫萍在营养胁迫下偏向上调AP2/ERF-ERF、MYB、bHLH家族特定基因和下调AP2/ERF-ERF、WRKY家族特定基因来响应营养胁迫,尤其是AP2/ERF-ERF、WRKY两个家族中特定基因表达下调在响应水体营养胁迫中有非常重要的作用. 本研究在转录因子层面对浮萍的生理特性,特别针对营养胁迫下转录因子的表达进行了探究,可为建立浮萍水生模式植物系统、深入探讨少根紫萍响应营养胁迫机制以及改造成耐受胁迫的高效淀粉积累能源植物提供理论指导. (图2 表4 参33)
Landoltia punctata (duckweed) is a type of floating plant with multiple functions and high environmental adaptability. Research on the molecular mechanisms of its physiological characteristics is scarce. Transcription factors (TFs), as essential gene expression regulation trans-acting factors, play a key role in plant physiological metabolism. This study aimed to uncover the macroscopic differences in TFs associated with the characteristics of L. punctata in comparison with other plants, to investigate the role of TFs in responding to nutrient starvation, and finally, to guide its large-scale applications. The TFs of L. punctata were predicted using iTAK (a plant TF,protein kinase identifier and classifier) and then compared with those of Arabidopsis thaliana, Oryza sativa, and Zea mays. Meanwhile, the TFs of L. punctata under nutrient starvation were analyzed at three time points: 0, 2, and 24 h. The results showed that approximate 1 076 transcription factors belonging to 66 families exist in L. punctata. The levels of AP2/ERF-ERF, B3, bHLH, bZIP, GeBP, C2H2, GRAS, HB-HD-ZIP, HSF, MADS, MYB, NAC, and WRKY significantly decreased relative to those of A. thaliana, O. sativa, and Z. mays. In addition, the transcriptome analysis of L. punctata under nutrient starvation revealed that certain specific TFs in the AP2/ERF-ERF, MYB, and bHLH families were upregulated, while others, particularly the AP2/ERF-ERF and WRKY families, were downregulated. The comparative analysis of TFs implied that the decline in NAC and MADS-box TFs might account for the high-flavone levels accompanied by low-lignin content and the rare flowering of duckweed, respectively. The results of the present study provide the basis for further molecular research in L. punctate and show that L. punctata could serve as a model plant in the future.


1 Hai Z, Appenroth K, Landesman L, Salmeán AA, Lam E. Duckweed rising at Chengdu: summary of the 1st international conference on duckweed application and research [J]. Plant Mol Biol, 2012, 78 (6): 627-632
2 Lam E, Appenroth KJ, Michael T, Mori K, Fakhoorian T. Duckweed in bloom: the 2nd international conference on duckweed research and applications heralds the return of a plant model for plant biology [J]. Plant Mol Biol, 2014, 84 (6): 737-742
3 Appenroth KJ, Sree KS, Fakhoorian T, Lam E. Resurgence of duckweed research and applications: report from the 3rd international duckweed conference [J]. Plant Mol Biol, 2015, 89 (6): 647
4 Blazey EB, McClure JW. The distribution and taxonomic significance of lignin in the Lemnaceae [J]. Am J Bot, 1968: 1240-1245
5 Tao X, Fang Y, Huang M-J, Xiao Y, Liu Y, Ma X-R, Zhao H. High flavonoid accompanied with high starch accumulation triggered by nutrient starvation in bioenergy crop duckweed (Landoltia punctata) [J]. BMC Gen, 2017, 18 (1): 166
6 唐利萍, 方扬, 靳艳玲, 陈夏媛, 赵海. 重金属镉超富集浮萍品种筛选及其对水体中镉的去除效果[J]. 应用与环境生物学报, 2015, 21 (5): 830-836 [Tang LP, Fang Y, Jin YL, Chen XY, Zhao H. Preliminary study on screening of cadmium hyperaccumulator duckweed strain and removal of cadmium in water [J]. Chin J Appl Environ Biol, 2015, 21 (5): 830-836]
7 Tao X, Fang Y, Xiao Y, Jin YL, Ma XR, Zhao Y, He KZ, Zhao H, Wang HY. Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation [J]. Biotechnol Biofuels, 2013, 6 (1): 72
8 Singh KB, Foley RC, O?ate-Sánchez L. Transcription factors in plant defense and stress responses [J]. Cur Opin Plant Biol, 2002, 5 (5): 430-436
9 Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Sch?lkopf B, Weigel D, Lohmann JU. A gene expression map of Arabidopsis thaliana development [J]. Nat genet, 2005, 37 (5): 501-506
10 Hillman WS, Culley DD. The uses of duckweed: the rapid growth, nutritional value, and high biomass productivity of these floating plants suggest their use in water treatment, as feed crops, and in energy-efficient farming [J]. Am Sci, 1978, 66 (4): 442-451
11 Docauer D. A nutrient basis for the distribution of the Lemnaceae [J]. Dissert Abs Inter, B (Sci Eng), 1983, 44 (6): 1705-1706
12 Kielak E, Sempruch C, Mioduszewska H, Klocek J, Leszczyński B. Phytotoxicity of roundup ultra 360 SL in aquatic ecosystems: biochemical evaluation with duckweed (Lemna minor L.) as a model plant [J]. Pest Biochem Physiol, 2011, 99 (3): 237-243
13 Li W, Liu Q, Xiong Y, Wang S, Wang N, Wang Y. Significant role of cytokinins in maintaining the life of fronds in Spirodela polyrrhiza [J]. J Plant Physiol Mol Biol, 2002, 29 (3): 215-220
14 Pérezrodríguez P, Corrêa LGG, Rensing SA, Kersten B, Muellerroeber B. PlnTFDB: updated content and new features of the plant transcription factor database [J]. Nuc Acids Res, 2010, 38 (Database issue): 822-827
15 Yilmaz A, Mejia-Guerra MK, Kurz K, Liang X, Welch L, Grotewold E. AGRIS: the arabidopsis gene regulatory information server, an update [J]. Nuc Acids Res, 2011, 39 (Suppl1): D1118-D1122
16 Dai X, Sinharoy S, Udvardi M, Zhao PX. PlantTFcat: an online plant transcription factor and transcriptional regulator categorization and analysis tool [J]. BMC Bioinform, 2013, 14 (1): 321
17 Jin J, Tian F, Yang D-C, Meng Y-Q, Kong L, Luo J, Gao G. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants [J]. Nuc Acids Res, 2017, 45 (D1): D1040-D1045
18 Zheng Y, Jiao C, Sun H, Rosli HG, Pombo MA, Zhang P, Banf M, Dai X, Martin GB, Giovannoni JJ. iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases [J]. Mol Plant, 2016, 9 (12): 1667
19 Hoagland DR, Arnon DI. The water-culture method for growing plants without soil [J]. Circ California Agric Exp Stat, 1950, 347 (2nd ed)
20 Andrews S. FastQC: a quality control tool for high throughput sequence data [R]. 2010
21 Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements [J]. Nat Methods, 2015, 12 (4): 357-360
22 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools [J]. Bioinformatics, 2009, 25 (16): 2078-2079
23 Anders S, Pyl PT, Huber W. HTSeq–a python framework to work with high-throughput sequencing data [J]. Bioinformatics, 2014: btu638
24 Wang L, Feng Z, Wang X, Wang X, Zhang X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data [J]. Bioinformatics, 2010, 26 (1): 136-138
25 Zik M, Irish VF. Flower development: initiation, differentiation, and diversification [J]. Ann Rev Cell Dev Biol, 2003, 19 (1): 119-140
26 Puranik S, Sahu PP, Srivastava PS, Prasad M. NAC proteins: regulation and role in stress tolerance [J]. Tre plant sci, 2012, 17 (6): 369-381
27 Ko JH, Yang SH, Park AH, Lerouxel O, Han KH. ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana [J]. Plant J, 2007, 50 (6): 1035-1048
28 Zhong R, Lee C, Ye ZH. Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis [J]. Mol Plant, 2010, 3 (6): 1087-1103
29 Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis [J]. Plant Cell, 2008, 20 (10): 2763-2782
30 Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis [J]. Plant Cell, 2007, 19 (1): 270-280
31 Grant EH, Fujino T, Beers EP, Brunner AM. Characterization of NAC domain transcription factors implicated in control of vascular cell differentiation in Arabidopsis and Populus [J]. Planta, 2010, 232 (2): 337-352
32 Maeda H, Dudareva N. The shikimate pathway and aromatic amino acid biosynthesis in plants [J]. Ann Rev Plant Biol, 2012, 63: 73-105
33 Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis [J]. Trends Plant Sci, 2010, 15 (10): 573-581


 WANG Qilin,NIU Xiangli,LIU Yongsheng.Post-transcriptional Processing of Two Functions of Unknown Transcription Factor Genes in Zea mays[J].Chinese Journal of Applied & Environmental Biology,2009,15(01):483.[doi:10.3724/SP.J.1145.2009.00483]
 LI Wei,HAN Lei,QIAN Yongqiang,et al.Characteristics and Functions of NAC Transcription Factors in Plants[J].Chinese Journal of Applied & Environmental Biology,2011,17(01):596.[doi:10.3724/SP.J.1145.2011.00596]
 HUANG Shengxiong,LIU Yongsheng.Genome-wide Analysis of WRKY Transcription Factors in Solanum tuberosum[J].Chinese Journal of Applied & Environmental Biology,2013,19(01):205.[doi:10.3724/SP.J.1145.2013.00205]
 ZHU Yunye,XUE Bing,WANG Anquan,et al.Comprehensive bioinformatic analysis of bZIP transcription factors in Solanum lycopersicum[J].Chinese Journal of Applied & Environmental Biology,2014,20(01):767.[doi:10.3724/SP.J.1145.2014.01033]
 DING Yanqiang,FANG Yang,et al.Systematic evolution of Lemnoideae determined based on chloroplast genome analysis[J].Chinese Journal of Applied & Environmental Biology,2017,23(01):215.[doi:10.3724/SP.J.1145.2016.04036]
 LI Qianqian,WANG Yan,et al.Effect of overexpressing transcription factors of Candida glycerinogenes on acid tolerance of Saccharomyces cerevisiae[J].Chinese Journal of Applied & Environmental Biology,2017,23(01):1006.[doi:10.3724/SP.J.1145.2017.01031]
 LI Qi,et al..Duckweed Landoltia punctata purifies micro-polluted surface water and produces starch[J].Chinese Journal of Applied & Environmental Biology,2018,24(01):1324.[doi:10.19675/j.cnki.1006-687x.2018.02023]
 WANG Mingxiu,LUAN Wei,et al.Responses of starch biosynthesis-related genes to nutrition starvation in Landoltia punctata[J].Chinese Journal of Applied & Environmental Biology,2019,25(01):128.[doi:10.19675/j.cnki.1006-687x.2018.04021]
 WU Huazhang,HONG Yun,CHI Yuxin & ZHAO yunli**.Regulation effect of the transcription factor ATF-7 on the GO toxicity in Caenorhabditis elegans[J].Chinese Journal of Applied & Environmental Biology,2019,25(01):339.[doi:10.19675/j.cnki.1006-687x.2018.11015]
 GU Yuanyang,YUE Lu,et al.Salt response analysis of tomato SlNAC1 promoter[J].Chinese Journal of Applied & Environmental Biology,2021,27(01):988.[doi:10.19675/j.cnki.1006-687x.2020.03022]

更新日期/Last Update: 2018-02-09