|本期目录/Table of Contents|

[1]贾俊香,谢英荷,李廷亮,等.秸秆与秸秆生物炭对采煤塌陷复垦区 土壤活性有机碳的影响*[J].应用与环境生物学报,2016,22(05):787-792.[doi:10.3724/SP.J.1145.2015.11011]
 JIA Junxiang,XIE Yinghe**,LI Tingliang & WANG Ling.Effect of the straw and its biochar on active organic carbon in reclaimed mine soils*[J].Chinese Journal of Applied & Environmental Biology,2016,22(05):787-792.[doi:10.3724/SP.J.1145.2015.11011]
点击复制

秸秆与秸秆生物炭对采煤塌陷复垦区 土壤活性有机碳的影响*()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
22卷
期数:
2016年05期
页码:
787-792
栏目:
生态系统的环境互作与表生过程专栏
出版日期:
2016-10-25

文章信息/Info

Title:
Effect of the straw and its biochar on active organic carbon in reclaimed mine soils*
作者:
贾俊香谢英荷李廷亮王玲
山西农业大学资源环境学院 太谷 030801
Author(s):
JIA Junxiang XIE Yinghe** LI Tingliang & WANG Ling
College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, China
关键词:
复垦土壤秸秆秸秆生物炭土壤活性有机碳
Keywords:
reclaimed soil straw biochar soil active organic carbon
分类号:
S156.92
DOI:
10.3724/SP.J.1145.2015.11011
摘要:
为了解农业废弃物对典型采煤塌陷复垦地活性有机碳的影响,采用盆栽培养试验,研究秸秆与秸秆生物炭对复垦3年(3 a)和7年(7 a)土壤总有机碳(TOC)、水溶性有机碳(DOC)、易氧化有机碳(ROC)与土壤微生物生物量碳(SMBC)的影响. 对复垦3 a和7 a土壤分别设置4个处理,包括不施肥(CK3与CK7)、只施氮肥(N3与N7)、氮肥与秸秆配施(NS3与NS7)以及氮肥与秸秆生物炭配施(NB3与NB7). 结果表明,秸秆与秸秆生物炭均能显著提高复垦土壤TOC与各活性有机碳含量. 与只施氮肥相比,施用秸秆处理的TOC、DOC、ROC与SMBC平均增幅为25.0%、46.0%、48.8%与41.5%,施用秸秆生物炭的平均增幅为37.8%、40.4%、37.2%与39.5%. 秸秆生物炭对TOC的提升效应强于秸秆,对DOC与ROC的提高弱于秸秆,对SMBC影响与秸秆间无显著差异. 除了复垦3 a土壤SMBC组分外,4个处理在复垦3 a土壤DOC、ROC组分与复垦7 a土壤3种活性有机碳组分从大到小均依次为NS、NB、N与CK. 复垦7 a土壤的TOC、DOC、ROC与SMBC分别比复垦3 a土壤对应指标高35.2%、36.7%、31.9%与28.2%. 此外,TOC分别与DOC、ROC、SMBC间呈显著的指数正相关,分别能解释DOC、ROC与SMBC变异的88.4%、84.7%与89.6%. 可见,秸秆施用在短时间内对土壤活性有机碳的提升效应强于秸秆生物炭,但对土壤固碳潜力的提高弱于生物炭,二者均可以作为有益物质施用于复垦土壤中. (图1 表3 参43)
Abstract:
This research aimed to determine the influence of agricultural wastes on soil active organic carbon in the typical reclaimed mine soil. A pot experiment was conducted to investigate the effect of straw and its biochar on total organic carbon (TOC), dissolved organic carbon (DOC), readily oxidized carbon (ROC) and soil microbial biomass carbon (SMBC) in soil reclaimed for 3 and 7 years. For each type of reclaimed soil, four treatments were designed including the control (CK3 and CK7), nitrogen application only (N3 and N7), nitrogen-straw combination (NS3 and NS7) and nitrogen-biochar combination (NB3 and NB7). The results showed that the application of straw and biochar both significantly increased total organic carbon and active organic carbon contents. Compared with the nitrogen only application, straw returning treatments increased TOC, DOC, ROC and SMBC by 25.0%, 46.0%, 48.8% and 41.5%, respectively. The biochar application also enhanced TOC by 37.8%, DOC by 40.4%, ROC by 37.2% and SMBC by 39.5%. Biochar was more effective than the straw in enhancing TOC, but weaker in increasing DOC and ROC contents. SMBC showed no significant difference between straw returning and biochar application. Apart from the SMBC proportion in reclaimed soil for 3 years, the descending order of four treatments in DOC and ROC proportion in 3 years reclaimed soil and three types active organic carbon in 7 years reclaimed soil were all NS, NB, N and CK. TOC, DOC, ROC and SMBC contents in reclaimed soil for 7 years were 35.2%, 36.7%, 31.9% and 28.2%, respectively, higher than the corresponding index in reclaimed soil for 3 years. Moreover, TOC showed significant exponential positive correlation with DOC, ROC and SMBC, which explained the variation of DOC (88.4%), ROC (84.7%) and SMBC (89.6%), respectively. This study suggests that the ability of straw application increasing soil active organic carbon was better than biochar. But the effect of straw application on enhancing soil carbon sequestration potential was weaker than biochar. Therefore, the straw and biochar could be applied to reclaimed soil as beneficial amendment.

参考文献/References:

1 冯瑞芳, 杨万勤, 张健. 森林土壤有机层生化特性及其对气候变化的响应研究进展[J]. 应用与环境生物学报, 2006, 12 (5): 734-739 [Feng RF, Yang WQ, Zhang J. Review about biogeochemistry characteristics of forest soil organic layer and its responses to climate changes [J]. Chin J Appl Environ Biol, 2006, 12 (5): 734-739] 2 Liang BC, Mackenzie AE, Schnitzer M, Monreal CM, Voroney PR, Beyaert RP. Management induced change in labile soil organic matter under continuous corn in eastern Canadian soils [J]. Biol Fertil Soils, 1997, 26 (2): 88-94 3 Hurisso TT, Norton JB, Norton U. Labile soil organic carbon and nitrogen within a gradient of dry land agricultural land-use intensity in Wyoming, USA [J]. Geoderma, 2014, 226: 1-7 4 Cookson WR, Abaye DA, Marschner P, Murphy DV, Stockdale EA, Goulding KWT. The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure [J]. Soil Biol Biochem, 2005, 37 (9): 1726-1737 5 戴全厚, 刘国彬, 薛萐, 余娜, 张超. 侵蚀环境人工灌木林土壤活性有机碳与碳库管理指数演变[J]. 西北农业学报, 2008, 17 (5): 215-219 [Dai QH, Liu GB, Xue S, Yu N, Zhang C. Evolvement of soil labile organic matter and carbon management index in the artificial shrubbery of erosion environment [J]. Acta Agric Bor-Occid Sin, 2008, 17 (5): 215-219] 6 李君剑, 严俊霞,李洪建. 矿区不同复垦措施对土壤碳矿化和酶活性的影响[J]. 生态学报, 2015, 35 (12): 4178-4185 [Li JJ, Yan JX, Li HJ. Effects of different reclaimed measures on soil carbon mineralization and enzyme actives in mining areas [J]. Acta Ecol Sin, 2015, 35 (12): 4178-4185] 7 Chodak M, Niklińska M. The effect of different tree species on the chemical and microbial properties of reclaimed mine soils [J]. Biol Fertil Soils, 2010, 46 (6): 555-566 8 姚虹, 马建军, 张树礼. 煤矿复垦地不同恢复阶段植物群落功能群结构与生物多样性变化[J]. 西北植物学报, 2012, 32 (5): 1013-1020 [Yao H, Ma JJ, Zhang SL. Structure and biodiversity of functional group in different restoration stages in coal mine reclamation land [J]. Acta Bot Bor-Occid sin, 2012, 32 (5): 1013-1020] 9 秦俊梅, 王改玲. 不同培肥对煤矿区复垦土壤酶活性及微生物量碳、氮的影响[J]. 水土保持学报, 2014, 28 (6): 207-210 [Qin JM, Wang Gl. Influence of different fertilizers upon carbon and nitrogen of microbial biomass and soil enzyme activity of reclaimed soil in the coal area [J]. J Soil Water Conserv, 2014, 28 (6): 207-210] 10 Asensio V, Covelo EF. Physical distribution of Ni, Pb and Zn in reclaimed mine soils observed by FE-SEM with an EDS detector [J]. Environ Sci Pollut Res, 2015, 22 (17): 1-10 11 高奇, 师学义, 李牧, 唐棠, 张美荣. 复垦村庄土壤重金属污染损失评价[J]. 水土保持学报, 2014, 28 (2): 204-209 [Gao Q, Shi XY, Li M, Tang T, Zhang MR. Evaluation on heavy metal pollution loss of soil reclaimed village [J]. J Soil Water Conserv, 2014, 28 (2): 204-209] 12 尹宁宁, 王丽萍. 复垦矿区土壤有机碳和微生物活性变化及其解析[J]. 环境科技, 2014, 27 (6): 5-8 [Yi NN, Wang LP. The changes and analysis of organic carbon and microbial activity in reclaimed soil in mine area [J]. Environ Sci Technol, 2014, 27 (6): 5-8] 13 徐蒋来, 尹思慧, 胡乃娟, 顾泽海, 王保君, 朱利群. 周年秸秆还田对稻麦轮作农田土壤养分、微生物活性及产量的影响[J]. 应用与环境生物学报, 2015, 21 (6): 1100-1105 [Xu JL, Yin SH, Hu NJ, Gu ZH, Wang BJ, Zhu LQ. Effects of annual straw returning on soil nutrients, microbial activity and yield in a rice-wheat rotation system [J]. Chin J Appl Environ Biol, 2015, 21 (6): 1100-1105] 14 刘定辉, 舒丽, 陈强, 陈尚洪, 陈红琳, 朱钟麟. 秸秆还田少免耕对冲积土微生物多样性及微生物碳氮的影响[J]. 应用与环境生物学报, 2011, 17 (2): 158-161 [Liu DH, Shu L, Chen Q, Chen SH, Chen HL, Zhu ZL. Effects of straw mulching and little- or zero-tillage on microbial diversity and biomass C and N of alluvial soil in Chengdu Plain, China [J]. Chin J Appl Environ Biol, 17 (2): 158-161] 15 Schulze ED, Wirth C, Heimana M. Climate change: managing forests after Kyoto [J]. Science, 2000, 289 (5487): 2058-2059 16 倪柳芳, 崔立明, 刘心中, 翁仁贵, 彭蕾. 生物黑碳研究[J]. 实验室科学, 2011, 14 (6): 265-269 [Ni LF, Cui LM, Liu XZ, Weng RG, Peng L. Research of biology blank carbon [J]. Lab Sci, 2011, 14 (6): 265-269] 17 朱金陵, 何晓峰, 王志伟, 李在峰, 雷廷宙. 玉米秸秆颗粒热解制炭的试验研究[J]. 太阳能学报, 2010, 31 (7): 789-793 [Zhu JL, He XF, Wang ZW, Li ZF, Lei TZ. Experimental study on pyrolysising and producting charcoal with corn straw pellet [J]. Acta Energ Solaris Sin, 2010, 31 (7): 789-793] 18 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科学出版社, 1999: 107-108, 231-233 [Lu RK. Methods of Soil Agricultural Chemistry Analysis [M]. Beijing: Chinese Agricultural Science and Technology Press, 1999: 107-108, 231-233] 19 占新华, 周立祥. 土壤溶液和水体中水溶性有机碳的比色测定[J]. 中国环境科学, 2002, 22 (5): 433-437 [Zhan XH, Zhou LX. Colorimetric determination of dissolved organic carbon in soil solution and water environment [J]. China Environ Sci, 2002, 22 (5): 433-437] 20 Lefroy RDB, Blair GJ, Strong WM. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance[J]. Plant Soil, 1993, 155 (1): 155-156 21 吴乐知, 蔡祖聪. 基于长期试验资料对中国农田表土有机碳含量变化的估算[J]. 生态环境, 2007, 16 (6): 1768-1774 [Wu LZ, Cai ZC. Estimation of the change of topsoil organic carbon of croplands in China based on long-term experimental data [J]. Ecol Environ, 2007, 16 (6): 1768-1774] 22 Ludwig B, Geisseler D, Michel K, Joergensen RG, Schulz E, Merbach I, Raupp J, Rauber R, Hu K, Niu L, Liu X. Effects of fertilization and soil management on crop yields and carbon stabilization in soils. A review [J]. Agron Sustain Dev, 2011, 31: 361-372 23 孟磊, 丁维新, 蔡祖聪, 钦绳武. 长期定量施肥对土壤有机碳储量和土壤呼吸影响[J]. 地球科学进展, 2005, 20 (6): 687-692 [Meng L, Ding WX, Cai ZC, Qin SW. Storage of soil organic C and soil respiration as Effected by long-tern quantitative fertilization [J]. Progr Geogr, 2005, 20 (6): 687-692] 24 Ding WX, Meng L, Yin YF, Cai ZC, Zheng XH. CO2 emission in an intensively cultivated loam as affected by long-term application of organic manure and nitrogen fertilizer [J]. Soil Biol Biochem, 2007, 39 (2): 669-679 25 Lu F, Wang XK, Han B, Ouyang ZY, Duan XN, Zhang H, Miao H. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland [J]. Glob Change Biol, 2009, 15 (2): 281-305 26 Lehmann?J, Rillig MC,?Thies J, Masiello CA, Hockaday WC, Crowley D. Biochar effects on soil biota-A review [J]. Soil Biol Biochem, 2011, 43: 1812–1836 27 张瑞, 张贵龙, 姬艳艳, 李刚, 常泓, 杨殿林.不同施肥措施对土壤活性有机碳的影响[J]. 环境科学, 2013, 34 (1): 277-282 [Zhang R, Zhang GL, Ji YY, Li G, Yang DL. Effects of different fertilizer application on soil active organic carbon [J]. Environ Sci, 2013, 34 (1): 277-282] 28 Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E. Controls on the dynamics of dissolved organic matter in soils: a review [J]. Soil Sci, 2000, 164 (5): 277- 304 29 Liu Z, Demisie W, Zhang M. Simulated degradation of biochar and its potential environmental implications [J]. Environ Pollut, 2013, 179: 146-152 30 倪进治, 徐建民, 谢正苗, 王德建. 不同施肥处理下土壤水溶性有机碳含量及其组成特征的研究[J]. 土壤学报, 2003, 40 (5): 724-730 [Ni JZ, Xu JM, Xie ZM, Wang JD. Contents of WSOC and characteristics of its composition under different fertilization systems [J]. Acta Pedol Sin, 2003, 40 (5): 724-730] 31 赵世翔, 姬强, 李忠徽, 王旭东. 热解温度对生物质炭性质及其在土壤中矿化的影响[J]. 农业机械学报, 2015, 46 (6): 183-192 [Zhao SX, Ji Q, Li ZW, Wang XD. Characteristics and mineralization in soil of apple-derived biochar producecd at different temperatures [J]. Trans Chin Soc Agric Mach, 2015, 46 (): 183-192] 32 鲁宁. 生物炭对华北高产农田土壤碳和作物产量的影响[D]. 北京: 中国农业科学院, 2014 [Lu N. The effect of biochar application soil carbon and grain yield in a high yield farmland of the north China plain [D]. Beijing: Chinese Academy of Agricultural Sciences, 2014] 33 佟小刚, 黄绍敏, 徐明岗, 卢昌艾, 张文菊. 长期不同施肥模式对潮土有机碳组分的影响[J]. 植物营养与肥料学报, 2009, 15 (4): 831-836 [Effects of the different long-term fertilizations on fractions of organic carbon in fluvo-aquic soil [J]. J Plant Nutr Fertil, 2009, 15 (4): 831-836] 34 Chantigny MH, Angers DA, Prevost D, Simard RR, Chalifour FP . Dynamics of soluble organic C and C mineralization in cultivated soils with varying N fertilization. Soil Biol Biochem, 1999, 31 (4): 543-550 35 王琳, 李玲玲, 高立峰, 刘杰, 罗珠珠, 谢军红. 长期保护性耕作对黄绵土总有机碳和易氧化有机碳动态的影响[J]. 中国生态农业学报, 2013, 21 (9): 1057-1063 [Wang L, Li LL, Gao LF, Liu J, Luo ZZ, Xie JH. Effect of long-term conservation tillage on total organic carbon and readily oxidizable organic carbon in loess soils [J]. Chin J Eco-Agric, 2013, 21 (9): 1057-1063] 36 夏战鹰, 黄道友, 刘守龙, 朱捍华. 稻草添加对新垦红壤易氧化有机碳和腐殖碳的影响[J]. 土壤通报, 2014, 45 (4): 871-875 [Xia ZY, Huang DY, Liu SL, Zhu HH. Effects of ex situ incorporation of rice straw on readily oxidizable organic carbon and humus carbon in a new reclaimed red soil [J]. Chin J Soil Sci, 2014, 45 (4): 871-875] 37 侯亚红, 王磊, 付小花, 乐毅全. 土壤碳收支对秸秆与秸秆生物炭还田的响应及其机制[J]. 环境科学, 2015, 36 (7): 2655-2661 [Hou YH, Wang L, Fu XH, Le YQ. Response of straw and straw biochar returning to soil carbon budget and its mechanism [J]. Environ Sci, 2015, 36 (7): 2655-2661] 38 Gaskin JW, Steiner C, Harris K, Das KC, Bibens B. Effect of low-temperature pyrolysis conditions on biochar for agricultural use [J]. Trans ASABE, 2008, 51 (6): 2061-2069 39 Sheng H, Zhou P, Zhang Y, Kuzyakov Y, Zhou Q, Ge T, Wang CH. Loss of labile organic carbon from subsoil due to land-use changes in subtropical China [J]. Soil Biol Biochem, 2015, 88: 148-157 40 王朔林, 杨艳菊, 王改兰, 赵旭, 陈春玉, 黄学芳. 长期施肥对栗褐土活性有机碳的影响[J]. 生态学杂志, 2015, 34 (5): 1223-1228 [Wang SL, Yang YJ, Wang GL, Zhao X, Chen CY, Huang XF. Effect of long-term fertilization on labile organic carbon in cinnamon soil [J]. Chin J Ecol, 2015, 34 (5): 1223-1228] 41 Blair GJ, Lefroy RDB. Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural systems [J]. Aust J Agric Res, 1995, 46 (7): 1459-1466 42 Xiao CW, Guenet B, Zhou Y, Su JQ, Janssens IA. Priming of soil organic matter decomposition scales linearly with microbial biomass response to litter input in steppe vegetation [J]. Oikos, 2015, 124 (5): 649-657 43 董扬红,曾全超, 李娅芸, 李鑫, 张宏, 安韶山.黄土高原不同植被类型土壤活性有机碳组分分布特[J]. 草地学报, 2015, 23 (2): 276-284 [Dong YH, Zeng QC, Li YY, Li X, Zhang H, An SS. The characteristics of soil active organic carbon composition under different vegetation types on the loess plateau [J]. Acta Agrestia Sin, 2015, 23 (2): 276-284]

相似文献/References:

[1]刘培旺,袁月祥,闫志英,等.秸秆的不同预处理方法对发酵产氢的影响[J].应用与环境生物学报,2009,15(01):125.[doi:10.3724/SP.J.1145.2009.00125]
 LIU Peiwang,YUAN Yuexiang,YAN Zhiying,et al.Effect of Straw Pretreatments on Bio-hydrogen Production[J].Chinese Journal of Applied & Environmental Biology,2009,15(05):125.[doi:10.3724/SP.J.1145.2009.00125]
[2]栗 丽 李廷亮 孟会生 谢英荷 洪坚平**.菌剂与肥料配施对矿区复垦土壤养分及微生物学特性的影响[J].应用与环境生物学报,2016,22(06):1156.[doi:10.3724/SP.J.1145.2016.06006]
 LI Li,LI Tingliang,MENG Huisheng,et al.Effects of combined application of microbial agents and fertilizers on soil nutrients and microbial characteristics in reclaimed soil[J].Chinese Journal of Applied & Environmental Biology,2016,22(05):1156.[doi:10.3724/SP.J.1145.2016.06006]
[3]秦改娟,王晓,陈青君,等.不同配方培养料生产双孢蘑菇过程中主要木质纤维素降解酶及物料组分的变化[J].应用与环境生物学报,2017,23(06):1035.[doi:10.3724/SP.J.1145.2017.01019]
 QIN Gaijuan,WANG Xiao,CHEN Qingjun**& ZHANG Guoqing.Changes of lignocellulolytic enzymes and material components in different compost formulas during the production of Agaricus bisporus[J].Chinese Journal of Applied & Environmental Biology,2017,23(05):1035.[doi:10.3724/SP.J.1145.2017.01019]
[4]赵光雷,郑赛,古芸,等.利用豆粕和小麦秸秆生产多肽的固体发酵工艺条件优化[J].应用与环境生物学报,2018,24(01):20.[doi:10.19675/j.cnki.1006-687x.2017.03009]
 ZHAO Guanglei,ZHENG Sai,GU Yun,et al.Optimization of solid-state fermentation process conditions for polypeptide production using soybean meal and wheat straw*[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):20.[doi:10.19675/j.cnki.1006-687x.2017.03009]
[5]谢钧宇,孟会生,焦欢,等.施肥对复垦土壤中活性和难降解碳氮组分的影响[J].应用与环境生物学报,2019,25(05):1113.[doi:10.19675/j.cnki.1006-687x.2019.05032]
 XIE Junyu,MENG Huisheng,et al.Effects of fertilization regimes on organic carbon and total nitrogen in labile and recalcitrant fractions of reclaimed soils[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):1113.[doi:10.19675/j.cnki.1006-687x.2019.05032]
[6]谢钧宇 焦欢 洪坚平 张杰 李丽娜 黄晓磊 栗丽 赵林婷 李廷亮**.施肥对复垦土壤中活性和难降解碳氮组分的影响*[J].应用与环境生物学报,2020,26(02):1.[doi:10.19675/j.cnki.1006-687x.2019.05032]
 XIE Junyu,JIAO Huan,HONG Jianping,et al.Effects of fertilization regimes on organic carbon and total nitrogen in labile and recalcitrant fractions in reclaimed soils*[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):1.[doi:10.19675/j.cnki.1006-687x.2019.05032]

更新日期/Last Update: 2016-10-25