|本期目录/Table of Contents|

 CHEN Dongming,SUN Geng**,et al.The effects of grazing on root exudates of dominant species in an alpine meadow of the eastern Tibetan Plateau[J].Chinese Journal of Applied & Environmental Biology,2016,22(22卷04):555-560.[doi:10.3724/SP.J.1145.2015.10022]





The effects of grazing on root exudates of dominant species in an alpine meadow of the eastern Tibetan Plateau
1四川农业大学动物科技院草学系 成都 611130 2中国科学院成都生物研究所,中国科学院山地生态恢复与生物资源利用重点实验室,生态恢复与生物多样性保育四川省重点实验室 成都 610041 3四川省草原科学研究院 成都 610097 4重庆市畜牧科学院 荣昌 402460 5九寨沟风景名胜区管理局 九寨沟 623402
CHEN Dongming1 2 SUN Geng2** ZHENG Qunying3 ZHANG Nannan2 RAN Qifan4 SHI Changguang3 XU Liangying5 ZENG Kai & LIU Lin1**
1Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China 2Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 3Sichuan Academy of Grassland Science, Chengdu 610097, China 4Chongqing Academy of Animal Sciences, Rongchang 402460, China 5Jiuzhaigou National Preserve Management Bureau, Jiuzhaigou 623402, China
root exudates grazing intensity Elymus nutans alpine meadow in situ method to trap root exudates of herb
S812 (271): Q945.78
根系分泌物是调节土壤养分循环的关键物质,对土壤微生物生理活性和有机物分解等土壤生态过程有关键影响. 为了解放牧条件下根系分泌物分泌速率和变化规律,在放牧管理试验样地上,采用原位草本根系分泌物收集法,在生长旺季测定不同放牧强度(不放牧、轻度放牧、重度放牧)和放牧停止后1 d和21 d取样(视为短期休牧)青藏高原高寒草甸优势物种垂穗披碱草(Elymus nutans)的根系分泌速率. 结果显示:放牧条件下,垂穗披碱草在生长旺季正午的根系分泌平均速率(以C计)为851.29 μg g-1 h-1. 放牧停止后1 d,不放牧、轻度放牧和重度放牧的根系分泌速率无显著差异;而放牧停止后21 d,轻度放牧的根系分泌速率[(1 032.33 ± 53.63)μg g-1 h-1]和地上生物量增量显著高于不放牧,重度放牧则与不放牧差异不显著. 本研究表明,轻度放牧和适当短期休牧能够增加根系分泌速率,并可能通过正反馈作用刺激植物地上补偿生长. (图3 表2 参51)
Root exudates are the key substances in regulating soil nutrient cycling, and they have pivotal impacts on soil microbial activity and organic matter decomposition. This paper aimed to clarify secretion rates and changes of root exudates under grazing condition. We conducted a grazing management experiment and adopted in situ method to measure root exudates of the dominant species Elymus nutans under different grazing intensities (no grazing, light grazing, heavy grazing) and different days after grazing stopped (1 day and 21 day) during the peak growing season in an alpine meadow of the eastern Tibetan Plateau. The results showed an average rate of root exudates of E. nutans as 851.29 μg C g-1 root h-1 during the peak growing season. The rate of root exudates was significantly higher in light grazing than no grazing, but there was no significant difference between heavy grazing and no grazing. The rate of root exudation 1 day after grazing showed no significant difference from that of no grazing, while the rate was significantly higher in 21 day after grazing than in 1 day after grazing and the no grazing. This study showed that both light grazing and rest grazing could enhance the rate of root exudation, therefore beneficial to maintenance of soil fertility in an alpine meadow ecosystem.


1 Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. The role of root exudates in rhizosphere interactions with plants and other organisms [J]. Annu Rev Plant Biol, 2006, 57: 233-266 2 刘玉, 魏洁, 黄雄飞, 彭逸生, 徐健荣. 红树植物桐花树、秋茄的有机酸类根系分泌物组成及含量[J]. 应用与环境生物学报, 2014, 20 (5): 850-855 [Liu Y, Wei J, Huang XF, Peng YS, Xu JR. Composition and contents of organic acids in root exudates of mangrove Aegiceras corniculatum and Kandelia candel [J]. Chin J Appl Environ Biol, 2014, 20 (5): 850-855] 3 Jones DL, Hodge A, Kuzyakov Y. Plant and mycorrhizal regulation of rhizodeposition [J]. New Phytol, 2004, 163 (3): 459-480 4 Brimecombe MJ, De Leij FA, Lynch JM. The effect of root exudates on rhizosphere microbial populations [M]//Pinton R, Varanini Z, Nannipieri?P. Biochemistry and Organic Substances at the Soil-plant interface. New York: Marcel Dekker, Inc, 2000: 95-140 5 Dakora FD, Phillips DA. Root exudates as mediators of mineral acquisition in low-nutrient environments [J]. Plant Soil, 2002, 245 (1): 35-47 6 Frank DA, Groffman PM. Plant rhizospheric N processes: what we don’t know and why we should care [J]. Ecology, 2009, 90 (6): 1512-1519 7 王海斌, 何海斌, 邱龙, 沈荔花, 方长旬, 林瑞余, 林文雄. 低磷诱导水稻化感抑草能力增强的分子生理特性[J]. 应用与环境生物学报, 2009, 15 (3): 289-294 [Wang HB, He HB, Qiu L, Shen LH, Fang CG, Lin RY, Lin WX. Molecular physiological properties of the enhanced weed-suppression ability of rice allelopathy induced by lower phosphorus supplies [J]. Chin J Appl Environ Biol, 2009, 15 (3): 289-294] 8 Drake JE, Darby BA, Giasson MA, Kramer MA, Phillips RP, Finzi AC. Stoichiometry constrains microbial response to root exudation-insights from a model and a field experiment in a temperate forest [J]. Biogeosciences, 2013, 10 (2): 821-838 9 De Deyn GB, Quirk H, Oakley S, Ostle N, Bardgett RD. Rapid transfer of photosynthetic carbon through the plant-soil system in differently managed grasslands [J]. Biogeosci Discussions, 2011, 8 (1): 1131-1139 10 Broeckling CD, Broz AK, Bergelson J, Manter, DK, Vivanco JM. Root exudates regulate soil fungal community composition and diversity [J]. Appl Environ Microbiol, 2008, 74 (3): 738-744 11 Baudoin E, Benizri E, Guckert A. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere [J]. Soil Biol Biochem, 2003, 35 (9): 1183-1192 12 Bertin C, Yang X, Weston LA. The role of root exudates and allelochemicals in the rhizosphere [J]. Plant Soil, 2003, 256 (1): 67-83 13 Farrar J, Hawes M, Jones D, Lindow S. How roots control the flux of carbon to the rhizosphere [J]. Ecology, 2003, 84 (4): 827-837 14 Paterson E, Thornton B, Midwood AJ, Sim A. Defoliation alters the relative contributions of recent and non-recent assimilate to root exudation from Festuca rubra [J]. Plant Cell Environ, 2005, 28 (12): 1525-1533 15 Thornton B, Paterson E, Midwood AJ, Sim A, Pratt SM. Contribution of current carbon assimilation in supplying root exudates of Lolium perenne measured using steady-state 13C labelling [J]. Physiol Plant, 2004, 120 (3): 434-441 16 Schnyder H. Long-term steady-state labelling of wheat plants by use of natural 13CO2/12CO2 mixtures in an open, rapidly turned-over system [J]. Planta, 1992, 187 (1): 128-135 17 Marschner H, Kirkby E, Cakmak I. Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients [J]. J Exp Bot, 1996, 47: 1255-1263 18 Meier IC, Avis PG, Phillips RP. Fungal communities influence root exudation rates in pine seedlings [J]. FEMS Microbiol Ecol, 2013, 83 (3): 585-595 19 Phillips RP, Meier IC, Bernhardt ES, Grandy AS, Wickings K, Finzi AC. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2 [J]. Ecol Lett, 2012, 15 (9): 1042-1049 20 Phillips RP, Finzi AC, Bernhardt ES. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation [J]. Ecol Lett, 2011, 14 (2): 187-194 21 Phillips RP, Bernhardt ES, Schlesinger WH. Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response [J]. Tree Physiol, 2009, 29 (12): 1513-1523 22 Phillips RP, Erlitz Y, Bier R, Bernhardt ES. New approach for capturing soluble root exudates in forest soils [J]. Funct Ecol, 2008, 22 (6): 990-999 23 Dong ZB, Hu GY, Yan CZ, Wang WL, Lu JF. Aeolian desertification and its causes in the Zoige Plateau of China’s Qinghai-Tibetan Plateau [J]. Environ Earth Sci, 2010, 59 (8): 1731-1740 24 Cao GM, Tang YH, Mo WH, Wang YS, Li YN, Zhao XQ. Grazing intensity alters soil respiration in an alpine meadow on the Tibetan plateau [J]. Soil Biol Biochem, 2004, 36 (2): 237-243 25 Walker TS, Bais HP, Grotewold E, Vivanco JM. Root exudation and rhizosphere biology [J]. Plant Physiol, 2003, 132 (1): 44-51 26 Doornbos RF, van Loon LC, Bakker PA. Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review [J]. Agron Sustainable Dev, 2012, 32 (1): 227-243 27 Henry F, Vesterg?rd M, Christensen S. Evidence for a transient increase of rhizodeposition within one and a half day after a severe defoliation of Plantago arenaria grown in soil [J]. Soil Biol Biochem, 2008, 40 (5): 1264-1267 28 Hokka V, Mikola J, Vestberg M, Set?l? H. Interactive effects of defoliation and an AM fungus on plants and soil organisms in experimental legume-grass communities [J]. Oikos, 2004, 106 (1): 73-84 29 Picon-Cochard C, Pilon R, Tarroux E, Pagès L, Robertson J, Dawson L. Effect of species, root branching order and season on the root traits of 13 perennial grass species [J]. Plant Soil, 2012, 353 (1-2): 47-57 30 Pilon R, Picon-Cochard C, Bloor JMG, Revaillot S, Kuhn E, Falcimagne R, Balandier P, Soussana JF. Grassland root demography responses to multiple climate change drivers depend on root morphology [J]. Plant Soil, 2013, 364 (1-2): 395-408 31 Van Sch?ll L, Hoffland E, Van Breemen N. Organic anion exudation by ectomycorrhizal fungi and Pinus sylvestris in response to nutrient deficiencies [J]. New Phytol, 2006, 170 (1): 153-163 32 Ziter C, MacDougall AS. Nutrients and defoliation increase soil carbon inputs in grassland [J]. Ecology, 2013, 94 (1): 106-116 33 Bardgett RD, Wardle DA, Yeates GW. Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms [J]. Soil Biol Biochem, 1998, 30 (14): 1867-1878 34 Bardgett RD, Wardle DA. Herbivore-mediated linkages between aboveground and belowground communities [J]. Ecology, 2003, 84 (9): 2258-2268 35 McNaughton SJ. Compensatory plant growth as a response to herbivory [J]. Oikos, 1983, 40 (3): 329-336 36 Hamilton EW, Frank DA, Hinchey PM, Murray TR. Defoliation induces root exudation and triggers positive rhizospheric feedbacks in a temperate grassland [J]. Soil Biol Biochem, 2008, 40 (11): 2865-2873 37 Bazot S, Mikola J, Nguyen C, Robin C. Defoliation-induced changes in carbon allocation and root soluble carbon concentration in field-grown Lolium perenne plants: do they affect carbon availability, microbes and animal trophic groups in soil? [J]. Funct Ecol, 2005, 19 (5): 886-896 38 Nowak R, Caldwell M. A test of compensatory photosynthesis in the field: implications for herbivory tolerance [J]. Oecologia, 1984, 61 (3): 311-318 39 Detling J, Dyer M, Winn D. Net photosynthesis, root respiration, and regrowth of Bouteloua gracilis following simulated grazing [J]. Oecologia, 1979, 41 (2): 127-134 40 Minichin P, Thorpe M, Farrar J. Short-term control of root: shoot partitioning [J]. J Exp Bot, 1994, 45 (5): 615-622 41 Kuzyakov Y, Cheng W. Photosynthesis controls of rhizosphere respiration and organic matter decomposition [J]. Soil Biol Biochem, 2001, 33 (14): 1915-1925 42 Boeuf-Tremblay V, Plantureux S, Guckert A. Influence of mechanical impedance on root exudation of maize seedlings at two development stages [J]. Plant Soil, 1995, 172 (2): 279-287 43 Groleau-Renaud V, Plantureux S, Guckert A. Influence of plant morphology on root exudation of maize subjected to mechanical impedance in hydroponic conditions [J]. Plant Soil, 1998, 201 (2): 231-239 44 Paterson E, Sim A. Rhizodeposition and C-partitioning of Lolium perenne in axenic culture affected by nitrogen supply and defoliation [J]. Plant Soil, 1999, 216 (1-2): 155-164 45 Frank DA, Groffman PM. Ungulate vs. landscape control of soil C and N processes in grasslands of Yellowstone National Park [J]. Ecology, 1998, 79 (7): 2229-2241 46 Holland EA, Parton WJ, Detling JK, Layne CD. Physiological responses of plant populations to herbivory and their consequences for ecosystem nutrient flow [J]. Am Nat, 1992, 140 (4): 685-706 47 Badri DV, Vivanco JM. Regulation and function of root exudates [J]. Plant Cell Environ, 2009, 32 (6): 666-681 48 Mikola J, Nieminen M, Ilmarinen K, Vestberg M. Belowground responses by AM fungi and animal trophic groups to repeated defoliation in an experimental grassland community [J]. Soil Biol Biochem, 2005, 37 (9): 1630-1639 49 Ilmarinen K, Mikola J, Nieminen M, Vestberg M. Does plant growth phase determine the response of plants and soil organisms to defoliation? [J]. Soil Biol Biochem, 2005, 37 (3): 433-443 50 Jones D, Nguyen C, Finlay R. Carbon flow in the rhizosphere: carbon trading at the soil-root interface [J]. Plant Soil, 2009, 321 (1-2): 5-33 51 Frank DA. Ungulate and topographic control of nitrogen: phosphorus stoichiometry in a temperate grassland; soils, plants and mineralization rates [J]. Oikos, 2008, 117 (4): 591-601


 XIN Qi,LIU Changfa,LIU Yuan,et al.Secretion of total organic carbon and inorganic carbon from roots of seepweed Suaeda heteroptera in response to Zn(II) stress[J].Chinese Journal of Applied & Environmental Biology,2014,20(22卷04):134.[doi:10.3724/SP.J.1145.2014.00134]
 XIN Qi,LIU Changfa,LIU Yuan,et al.Secretion of total organic carbon and inorganic carbon from roots of seepweed Suaeda heteroptera in response to Zn(II) stress[J].Chinese Journal of Applied & Environmental Biology,2014,20(22卷04):134.[doi:10.3724/SP.J.1145.2014.00134]
[3]刘玉,魏洁,黄雄飞,等. 红树植物桐花树、秋茄的有机酸类根系分泌物组成及含量[J].应用与环境生物学报,2014,20(05):850.[doi:10.3724/SP.J.1145.2014.01037]
 LIU Yu,WEI Jie,HUANG Xiongfei,et al.Composition and contents of organic acids in root exudates of mangrove Aegiceras corniculatum and Kandelia candel[J].Chinese Journal of Applied & Environmental Biology,2014,20(22卷04):850.[doi:10.3724/SP.J.1145.2014.01037]
 ZHU Erxiong,ZHAN Wei,et al.Early influence of the grazing intensity on ecosystem respiration of alpine meadows[J].Chinese Journal of Applied & Environmental Biology,2016,22(22卷04):561.[doi:10.3724/SP.J.1145.2015.11059]
[5]翟文婷,陈懂懂,李奇,等.放牧强度对环青海湖地区高寒草原土壤微生物群落碳代谢特征的影响[J].应用与环境生物学报,2017,23(04):685.[doi: 10.3724/SP.J.1145.2016.07014]
 ZHAI Wenting,CHEN Dongdong,et al.Design and construction of an L-malate-overproducing Escherichia coli strain[J].Chinese Journal of Applied & Environmental Biology,2017,23(22卷04):685.[doi: 10.3724/SP.J.1145.2016.07014]
 LI Yang,,et al.Effects of root exudates of different carbon concentrations and sources on soil aggregate stability[J].Chinese Journal of Applied & Environmental Biology,2019,25(22卷04):1061.[doi:10.19675/j.cnki.1006-687x.2018.12036]
 FAN Lihua,ZHOU Xingmei,WU Shulan,et al.Research advances on the effects of drought stress in plant rhizosphere environments[J].Chinese Journal of Applied & Environmental Biology,2019,25(22卷04):1244.[doi:10.19675/j.cnki.1006-687x.2018.12037]
[8]柳检 罗立强**.植物对矿物的风化作用机制研究进展*[J].应用与环境生物学报,2019,25(06):1.[doi:10.19675/j.cnki.1006-687x.2019.02026]
 LIU Jian & LUO Liqiang**.Advances in research on the mechanisms of plant-driven mineral weathering**[J].Chinese Journal of Applied & Environmental Biology,2019,25(22卷04):1.[doi:10.19675/j.cnki.1006-687x.2019.02026]
[9]胡凯 陶建平 黄科 胡靖 王微**.模拟根系分泌物碳输入对凋落叶分解中微生物群落动态的影响[J].应用与环境生物学报,2020,26(02):1.[doi:10.19675/j.cnki.1006-687x.2019.05030]
 HU Kai,TAO Jianping,HU ANG Ke,et al. Effects of simulated root exudate carbon inputs on dynamics in microbial community during litter decomposition*[J].Chinese Journal of Applied & Environmental Biology,2020,26(22卷04):1.[doi:10.19675/j.cnki.1006-687x.2019.05030]

更新日期/Last Update: 2016-08-25