|本期目录/Table of Contents|

[1]唐利萍,方扬,靳艳玲,等.重金属镉超富集浮萍品种筛选及其对水体中镉的去除效果[J].应用与环境生物学报,2015,21(05):830-836.[doi:10.3724/SP.J.1145.2015.04023]
 TANG Liping,FANG Yang,JIN Yanling,et al.Preliminary study on screening of cadmium hyperaccumulator duckweed strain and removal of cadmium in water[J].Chinese Journal of Applied & Environmental Biology,2015,21(05):830-836.[doi:10.3724/SP.J.1145.2015.04023]
点击复制

重金属镉超富集浮萍品种筛选及其对水体中镉的去除效果()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
21卷
期数:
2015年05期
页码:
830-836
栏目:
论文
出版日期:
2015-10-25

文章信息/Info

Title:
Preliminary study on screening of cadmium hyperaccumulator duckweed strain and removal of cadmium in water
作者:
唐利萍 方扬 靳艳玲 陈夏媛 赵海
1中国科学院成都生物研究所,中国科学院环境与应用微生物重点实验室 成都 610041 2中国科学院成都生物研究所,环境微生物四川省重点实验室 成都 610041 3中国科学院大学 北京 100049
Author(s):
TANG Liping FANG Yang JIN Yanling CHEN Xiayuan ZHAO Hai
1Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 3University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
浮萍重金属镉品种筛选干物质积累率富集系数
Keywords:
duckweed cadmium screen biomass accumulation bioconcentration factor
分类号:
X52 : Q949.717.3
DOI:
10.3724/SP.J.1145.2015.04023
文献标志码:
A
摘要:
为筛选出能高效去除水体重金属镉,并能快速积累生物量的浮萍品种,对实验室保存的12个能耐受30 mg/L镉浓度的浮萍品种在0.5 mg/L和10 mg/L的镉浓度下进行复筛,获得最优品种少根紫萍(Landoltia punctata)ZH0049,并研究其在不同镉浓度胁迫下的生长状况和镉富集能力,同时分析其叶绿素含量变化与镉胁迫浓度的关系. 结果显示:ZH0049在0-0.5 mg/L的镉浓度范围内能正常生长,干物质积累率最高可达到6.44 g m-2 d-1. 在0-3 mg/L的镉浓度范围内,ZH0049对镉的吸收率、去除率以及富集系数在0.5 mg/L时出现波谷,而在3 mg/L时达到最高,分别为66.74%、72.43%和770. 叶绿素相对含量实验结果显示,当镉浓度大于0.5 mg/L,浮萍生长受到抑制,叶绿素a、b含量开始下降,相对于初始值最高下降了61.79%和32.08%. 当镉浓度从0.5 mg/L至3 mg/L,叶绿素相对含量(Chl a/Chl b)相对于初始值分别下降了3.49%、7.28%、19.32%、31.33%和42.59%,表明叶绿素a降幅大于叶绿素b. 综上,ZH0049能将水体中的镉富集在体内的同时,保持较高的干物质积累量,从而达到较好的重金属去除效果,为水体中镉的去除建立了一种新途径.
Abstract:
This research aimed to screen a duckweed species capable of rapidly accumulating biomass and effectively removing cadmium from aqueous solution. We screened 12 species under the cadmium concentration of 30 mg/L in early experiments, followed by screening under the cadmium concentration of 0.5 mg/L and 10 mg/L, and found the optimal species Landoltia punctata named ZH0049. The present study investigated the growth status of the screened duckweed, and the ability to phytoremediate cadmium from aqueous solution as well as the interaction of chlorophyll content with different cadmium concentrations. The results showed that it could grow normally under the concentration of 0–0.5 mg/L with biomass accumulation rate up to 6.44 g m-2 d-1. The accumulation and removal rate and bioconcentration factor of the duckweed was the lowest at the 0.5 mg/L cadmium concentration, then increased with the cadmium concentration. The maximum accumulation, removal rate and bioconcentration factor of ZH0049 reached 66.74%, 72.43% and 770 respectively at 3 mg/L cadmium concentration. Analysis of chlorophyll content found that chlorophyll a and chlorophyll b began to decrease when cadmium started to suppress the duckweed growth at the concentration of 0.5 mg/L, then kept decreasing with the increase of cadmium concentration. Compared to the initial value, the chlorophyll a/b in each group decreased by 3.49%, 7.28%, 19.32%, 31.33% and 42.59%, respectively, when the cadmium concentration increased from 0.5 mg/L to 3 mg/L, indicating greater destruction of cadmium to chlorophyll a than to chlorophyll b. The present study showed that the duckweed can maintain a high biomass accumulation and can effectively remove cadmium in wastewater by translating water cadmium to plant tissue.

参考文献/References:

1 Pietrini F, Iannelli MA, Montanari R, Bianconi D, Massacci A. Cadmium interaction with thiols and photosynthesis in higher plants [C]//Hemantaranjan A. Advances in Plant Physiology Jodhpur. India: Scientific Publishers, 2005: 313-326
2 范力, 张建强, 程新, 刘伟, 夏明芳, 王志良. 离子交换法及吸附法处理含铬废水的研究进展[J]. 水处理技术, 2009, 35 (1): 30-33 [Fan L, Zhang JQ, Cheng X, Liu W, Xia MF, Wang ZL. Progress of treatment of waste water containing chromium by ion-exchange method and adsorption method [J]. Technol Water Treat, 2009, 35 (1): 30-33]
3 包亚强, 魏立安. 反渗透技术处理与回用电镀废水的研究[J]. 江西科学, 2008, 26 (5): 781-784 [Bao YQ, Wei LA. Research of reverse osmosis technology to the treatment and recycling of the wastewater from industry [J]. Jiangxi Sci, 2008, 26 (5): 781-784]
4 张志军, 李玲, 朱宏, 王甫洋, 华娟. 化学沉淀法去除电镀废水中铬的实验研究[J]. 环境科学与技术, 2008, 31 (7): 96-97 [Zhang ZJ, Li L, Zhu H, Wang FX, Hua J. Removing chromium from electroplating wastewater by chemical precipitation [J]. Environ Sci Technol, 2008, 31 (7): 96-97]
5 张子间. 微电解一生物法处理含铬电镀废水的研究[J]. 环境污染治理技术与设备, 2004, 5 (12): 79-81 [Zhang ZJ. Research on treating electroplating wastewater containing Cr6 + through the combined process of mircroelectrolysis and microbe [J]. Technol Equip Environ Pollut Contr, 2004, 5 (12): 79-81]
6 尔丽珠, 秦晓丹, 张惠源. 离子交换法移动处理重金属废水[J]. 电镀与精饰, 2007, 29 (2): 48-51 [Er LZ, Qin XD, Zhang HY. Mobile treatment of waste water containing heavy metal by ion exchange method [J]. Plat Finish, 2007, 29 (2): 48-51]
7 郭燕妮, 方增坤, 胡杰华, 谢洪珍, 李黎婷, 叶志勇. 化学沉淀法处理含重金属废水的研究进展[J]. 工业水处理, 2011, 31 (12): 9-13 [Guo YN, Fang ZK, Hu JH, Xie HZ, Li LT, Ye ZY. Research development of treating wastewater containing heavy metals by chemical precipitation process [J]. Ind Water Treat, 2011, 31 (12): 9-13]
8 Mishra VK, Tripathi BD. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour Technol [J], 2008, 99 (15): 7091-7097
9 Sune N, Sánchez G, Caffaratti S, Maine MA. Cadmium and chromium removal kinetics from solution by two aquatic macrophytes [J]. Environ Pollut, 2007, 145 (2): 467-473
10 Narain S, Ojha CSP, Mishra SK, Chaube UC, Sharma PK. Cadmium and chromium removal by aquatic plant [J]. Int J Environ Sci, 2011, 1 (6): 1297-1304
11 Wang KS, Huang LC, Lee HS, Chen PY, Chang SH. Phytoextraction of cadmium by Ipomoea aquatica (water spinach) in hydroponic solution: effects of cadmium speciation [J]. Chemosphere, 2008, 72 (4): 666-672
12 Mkandawire M, Dudel EG. Are Lemna spp. effective phytoremediation agents [J]. Biorem Biodiver Bioavailab, 2007, 1 (1): 56-71
13 Xie WY, Huang Q, Li G, Rensing C, Zhu YG. Cadmium accumulation in the rootless macrophyte Wolffia globosa and its potential for phytoremediation [J]. Int J Phytorem, 2013, 15 (4): 385-397
14 Kara Y, Basaran D, Kara I, Zeytunluoglu A, Gen? H. Bioaccumulation of nickel by aquatic macrophyta Lemna minor (Duckweed) [J]. Int J Agric Biol, 2003, 5 (3): 281-283
15 Seth CS, Chaturvedi PK, Misra V. Toxic effect of arsenate and cadmium alone and in combination on giant duckweed (Spirodela polyrrhiza L.) in response to its accumulation [J]. Environ Toxicol, 2007, 22 (6): 539-549
16 Upatham ES, Boonyapookana B, Kruatrachue M, Pokethitiyook P, Parkpoomkamol K. Biosorption of cadmium and chromium in duckweed Wolffia globosa [J]. Int J Phytorem, 2002, 4 (2): 73-86
17 Bergmann BA, Cheng J, Classen J, Stomp AM. In vitro selection of duckweed geographical isolates for potential use in swine lagoon effluent renovation [J]. Bioresour Technol, 2000, 73 (1): 13-20
18 Chen LC, Fang Y, Jin YL, Chen Q, Zhao YG, Xiao Y, Zhao H. Biosorption of Cd2+ by untreated dried powder of duckweed Lemna aequinoctialis [J]. Desalinat Water Treat, 2015, 53 (1): 183-194
19 卫生部. GB/T 5009.15-2003 食品中镉的测定[M]. 北京: 中国标准出版社, 2003
20 黄帆, 郭正元, 徐珍. 测定浮萍叶绿素含量的方法研究[J]. 实验技术与管理, 2007, 24 (5): 29-31 [Huang F, Guo ZY, Xu Z. Determined methods of chlorophy II from Lemma paucicostata [J]. Exp Technol Manage, 2007, 24 (5): 29-31]
21 Zayed A, Gowthaman S, Terry N. Phytoaccumulation of trace elements by wetland plants: I. Duckweed [J]. J. Environ Qual, 1998, 27 (3): 715-721
22 Naumann B, Eberius M, Appenroth KJ. Growth rate based dose–response relationships and EC-values of ten heavy metals using the duckweed growth inhibition test (ISO 20079) with Lemna minor L. clone St [J]. J Plant Physiol, 2007, 164 (12): 1656-1664
23 Mkandawire M, Dudel EG. Are Lemna spp. effective phytoremediation agents [J]. Biorem Biodivers Bioavailab, 2007, 1 (1): 56-71
24 Jun R, Ling T. Increase of Cd accumulation in five poplar (Populus L.) with different supply levels of Cd [J]. Int J Phytorem, 2012, 14 (2): 101-113
25 Chaudhuri D, Goswami C, Chatterjee S, Majumder A, Mishra AK, Bandyopadhyay K. Phytoremediation of cadmium and nickel by Spirodela polyrhiza [J]. Indian J Environ Prot, 2011, 31 (9): 751-757
26 Baker A. Metal tolerance [J]. New Phytol, 1987, 106 (S1): 93-111
27 Chaudhuri D, Majumder A, Misra AK, Bandyopadhyay K. Cadmium removal by Lemna minor and Spirodela polyrhiza [J]. Int J Phytorem, 2014, 16 (11): 1119-1132
28 李伶, 袁琳, 宋丽娜, 顾詠洁. 镉对浮萍叶绿素荧光参数的影响[J]. 环境科学学报, 2010, 30 (5): 1062-1068 [Li L, Yuan L, Song LN, Gu YJ. Effects of cadmium stress on chlorophyll fluorescence parameters of Lemna minor L. [J]. J Environ Sci, 2010, 30 (5): 1062-1068]
29 刘周莉, 何兴元, 陈玮. 镉胁迫对金银花生理生态特征的影响[J]. 应用生态学报, 2009, 20 (1): 40-44 [Liu ZL, He XY, Chen W. Effects of cadmium stress on the growth and physiological characteristics of Lonicera japonica [J]. Chin J Appl Ecol, 2009, 20 (1): 40-44]
30 万雪琴, 张帆, 夏新莉, 尹伟伦. 镉处理对杨树光合作用及叶绿素荧光参数的影响[J]. 林业科学, 2008, 44 (6): 73-78 [Wan XQ, Zhang F, Xia XL, Yin WL. Effects of cadmium on photosynthesis and chlorophyll fluorescence parameters of solution-cultured poplar plants [J]. Sci Silv Sin, 2008, 44 (6): 73-78]
31 Clijsters H, Van Assche F. Inhibition of photosynthesis by heavy metals [J]. Photosynth Res, 1985, 7 (1): 31-40
32 施晓东, 韩利红, 刘开全, 刘潮, 朱名燕. Cd · Zn 复合污染对蚕豆叶绿体含量的影响[J]. 安徽农业科学, 2008, 36 (30): 13036-13039 [Shi XD, Han LH, Liu KQ, Liu C, Zhu MY. Effects of Cd and Zn combined pollution on chlorophyll content in broad bean [J]. J Anhui Agric Sci, 2008, 36 (30): 13036-13039]
33 Mestayer CR, Culley DD, Standifer LC, Koonce KL. Solar energy conversion efficiency and growth aspects of the duckweed, Spirodela punctata (GFW Mey.) Thompson [J]. Aquat Bot, 1984, 19 (1): 157-170
34 Uysal Y, Taner F. Bioremoval of cadmium by Lemna minor in different aquatic conditions [J]. Clean Soil Air Water, 2010, 38 (4): 370-377
35 GB 8978—1996 中华人民共和国国家标准污水综合排放标准[S], 1996 [GB 8978—1996 Integrated Wastewater Discharge Standard, 1996]
36 Prasad MNV, Malec P, Waloszek A, Bojko M, Strza?ka K. Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation [J]. Plant Sci, 2001, 161 (5): 881-889
37 John R, Ahmad P, Gadgil K, Sharma S. Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. [J]. Plant Soil Environ, 2008, 54 (6): 262

相似文献/References:

[1]陈兰钗,方扬,靳艳玲,等.浮萍(Lemna aequinoctialis)干粉对Pb2+的吸附[J].应用与环境生物学报,2013,19(06):1046.[doi:10.3724/SP.J.1145.2013.01046]
 CHEN Lanchai,FANG Yang,JIN Yanling,et al.Biosorption of Pb2+ by Dried Powder of Duckweed (Lemna aequinoctialis)[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):1046.[doi:10.3724/SP.J.1145.2013.01046]
[2]鲍姝,方扬,靳艳玲,等.污水氮磷浓度对云南本地浮萍生长及氮磷去除的影响[J].应用与环境生物学报,2014,20(01):56.[doi:10.3724/SP.J.1145.2014.00056]
 BAO Shu,FANG Yang,JIN Yanling,et al.Influence of ammonium and phosphate concentration of sewage on the growth, nitrogen and phosphorus removal of duckweed in Yunan[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):56.[doi:10.3724/SP.J.1145.2014.00056]
[3]张浩,方扬,靳艳玲,等.耐高氨氮浮萍的筛选及优势品种的生长特性[J].应用与环境生物学报,2014,20(01):63.[doi:10.3724/SP.J.1145.2014.00063]
 ZHANG Hao,FANG Yang,JIN Yanling,et al.Screening for high ammonia tolerant duckweed and growth characteristics of dominant species[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):63.[doi:10.3724/SP.J.1145.2014.00063]
[4]谢天艳,何开泽,赵海,等.4种浮萍提取物的抗菌活性和黄酮含量[J].应用与环境生物学报,2014,20(02):238.[doi:10.3724/SP.J.1145.2014.00238]
 XIE Tianyan,HE Kaize,ZHAO Hai,et al.Antimicrobial activities and flavonoid contents of the extracts from four strains of duckweed[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):238.[doi:10.3724/SP.J.1145.2014.00238]
[5]孙蛟龙,方扬,靳艳玲,等.浮萍转录组数据SSR位点的生物信息学分析[J].应用与环境生物学报,2015,21(03):401.[doi:10.3724/SP.J.1145.2014.04027]
 SUN Jiaolong,FANG Yang,JIN Yanling,et al.Bioinformatic analysis on SSR information in duckweed transcriptome[J].Chinese Journal of Applied & Environmental Biology,2015,21(05):401.[doi:10.3724/SP.J.1145.2014.04027]
[6]丁彦强,方扬,靳艳玲,等.基于叶绿体基因组的浮萍亚科系统进化[J].应用与环境生物学报,2017,23(02):215.[doi:10.3724/SP.J.1145.2016.04036]
 DING Yanqiang,FANG Yang,et al.Systematic evolution of Lemnoideae determined based on chloroplast genome analysis[J].Chinese Journal of Applied & Environmental Biology,2017,23(05):215.[doi:10.3724/SP.J.1145.2016.04036]
[7]赖烦,靳艳玲,方扬,等.浮萍培养基的降黏及其发酵产乳酸[J].应用与环境生物学报,2020,26(04):1010.
 LAI Fan,,et al.Viscosity reduction of duckweed medium and fermentation to produce lactic acid[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):1010.
[8]王香莲,高桂青,刘博,等.鄱阳湖流域浮萍种质资源分布及其对水环境因子的响应[J].应用与环境生物学报,2020,26(04):1000.
 WANG Xianglian,GAO Guiqing,et al.Distribution of duckweed germplasm resources and its response to water environment factors in Poyang Lake basin[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):1000.
[9]黄家庆,赖永翔,翁伯琦,等.花生壳生物炭对镉污染菜园土壤细菌群落结构的影响[J].应用与环境生物学报,2020,26(05):1115.[doi: 10.19675/j.cnki.1006-687x.2019.10005]
 HUANG Jiaqing,LAI Yongxiang,et al.Effect of peanut shell biochar on the bacterial community structure in cadmium-containing vegetable soil[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):1115.[doi: 10.19675/j.cnki.1006-687x.2019.10005]

备注/Memo

备注/Memo:
国家科技支撑计划项目(2015BAD15B01)、科技部国际合作计划项目(2014DFA30680)、中国科学院开放研究基金计划项目(KLCAS-2014-02)和中国科学院“西部之光”人才培养项目(Y2C5021100)资助 Supported by the National Key Technology R&D Program of China (2015BAD15B01), the International Cooperation Program of Ministry of Science and Technology of China (2014DFA30680), the Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences (KLCAS-2014-02), and the “Western Light” Foundation of The Chinese Academy of Sciences (Y2C5021100).
更新日期/Last Update: 2015-10-26