|本期目录/Table of Contents|

[1]苏军,李刚,吴明基,等.转Osepsps抗草甘膦水稻不同生境适合度及对稻田杂草的影响[J].应用与环境生物学报,2015,21(05):897-903.[doi:10.3724/SP.J.1145.2015.02027]
 SU Jun,LI Gang,WU Mingji,et al.Fitness of transgenic glyphosate-tolerant rice in different habitats and its influence on paddy field weeds[J].Chinese Journal of Applied & Environmental Biology,2015,21(05):897-903.[doi:10.3724/SP.J.1145.2015.02027]
点击复制

转Osepsps抗草甘膦水稻不同生境适合度及对稻田杂草的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
21卷
期数:
2015年05期
页码:
897-903
栏目:
研究论文
出版日期:
2015-10-25

文章信息/Info

Title:
Fitness of transgenic glyphosate-tolerant rice in different habitats and its influence on paddy field weeds
作者:
苏军 李刚 吴明基 陈子强 宋亚娜 林智敏
福建省农业科学院生物技术研究所,福建省农业遗传工程重点实验室 福州 350003
Author(s):
SU Jun LI Gang WU Mingji CHEN Ziqiang SONG Yana LIN Zhimin
Biotechnology Institute of Fujian Academy of Agricultural Sciences, Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fuzhou 350003, China
关键词:
转基因水稻抗草甘膦生态适合度稻田杂草
Keywords:
transgenic rice glyphosate resistance fitness weeds
分类号:
S511.03 : Q788
DOI:
10.3724/SP.J.1145.2015.02027
文献标志码:
A
摘要:
携带适合度优势基因的转基因作物如果长期存活于栽培系统之外,抗性基因可能转移到野生近缘种并带来生态问题. 以转Osepsps基因水稻EP为材料,以非转基因受体“明恢86”为对照,通过田间定位试验,研究半野生生境下转Osepsps基因水稻的营养生长、繁殖能力以及稻田杂草的种类、频度和密度等指标变化,分析转Osepsps基因在半野生生境中的生态适合度以及对稻田杂草群落的影响. 连续2年试验的结果显示:在常规栽培和半野生生境下,转基因稻与非转基因稻的株高、分蘖数、单株穗数、单株总粒数、单株实粒重和千粒重等指标没有显著差异;但结实率显著受环境影响,半野生生境下转基因水稻2年结实率为50.33%和17.72%,相比对照的68.82%和30.27%均显著下降(P < 0.05);2012年转基因稻单株实粒数为335粒,显著少于非转基因对照的548粒(P < 0.05). 转基因稻与非转基因稻稻田的杂草种类均为9科9属9种;栽培稻田杂草密度和频度显著低于半野生稻田;相同生境下转基因稻与非转基因稻稻田杂草频度、密度总体上没有差异. 本研究表明,与非转基因对照相比,转epsps基因稻生态适合度没有显著提高,在半野生生境下有所下降,其生态风险不高于栽培稻.
Abstract:
When in a host outside cultivation for a long time, the fitness-conferring transgenes may be spread from an agricultural host to a weedy relative. This research aimed to assess the fitness of glyphosate-tolerant rice in habitats outside of cultivation. We planted transgenic and non-transgenic rice in semi wild habitat and cultivated plots, recorded the plant height, number of tillering as well as weeds species and numbers during the growing course, and investigated the reproduction index after harvesting. The results showed no significant differences between transgenic and non-transgenic lines under the same growing condition in plant height or number of tillers in vegetative period, or the reproduction indexes in maturity period including number of spikes per plant, total grain numbers per plant, grain weight per plant, and the weight of 1000 grains. However, the seed set ratio of transgenic rice was 50.33% in 2013 and 17.72% in 2012, obviously lower than that of non-transgenic rice (68.82% and 30.27% respectively) in semi wild habitat. In 2012 the filling grain numbers per plant of transgenic rice was 335 grains, significantly lower than the 548 grains of non-transgenic rice. For both transgenic and non-transgenic rice paddies, 9 species of weeds were recorded in semi wild habitat and cultivated plots, with no difference between. Field weed frequency and density were obviously lower in cultivated plots than in semi wild habitat, but with no difference between transgenic and non-transgenic fields. The results suggested that compared to non-transgenic rice, the fitness of transgenic rice was not improved but rather declined in semi wild habitat. Therefore transgenic rice brings with it no more ecological risk than non-transgenic ones when outside of cultivation.

参考文献/References:

1 甘晓伟, 骆世明. 中国利用生物多样性控制水稻病虫草害技术[J]. 生态学杂志, 2008, 27 (5): 853-857 [Gan XW, Luo SM. Disease-, insect pest-, and weed control of rice production in China by using biodiversity technology. Chin J Ecol, 2008, 27: 853-85]
2 张为农. 我国水稻除草剂的发展趋势[J]. 营销界: 农资与市场, 2014 (6): 84-86
3 Singh OV, Ghai S, Paul D, Jain RK. Genetically modified crops: success safety assessment, and public concern [J]. Appl Microbiol Biotechnol, 2006, 71: 598-607
4 Ceddia MG, Bartlett M, Perrings C. Landscape gene flow, coexistence and threshold effect: the case of genetically modified herbicide tolerant oilseed rape (Brassica napus) [J]. Ecol Model, 2007, 205: 169-180
5 Carpenter J. Impacts of GM crops on biodiversity [J]. GM Crops, 2011, 2: 1-17
6 李云河, 彭于发, 李香菊, 吴孔明. 转基因耐除草剂作物的环境风险及管理[J]. 植物学报, 2012, 47 (3): 197-208 [Li YH, Peng YF, Li XG, Wu KM. Ecological risks of herbicide-tolerant genetically modified crops and associated management. Bull Bot, 2012, 47: 197-208]
7 Rieseberg LH, Burke JM. The biological reality of species: gene flow, selection, and collective evolution [J]. Taxon, 2001, 50: 47-67
8 Snow AA, Andow DA, Gepts P, Hallerman EM, Power A, Tiedje JM, Wolfenbarger LL. Genetically engineered organisms and the environment: current status and recommendations [J]. Ecol Appl, 2005, 15: 377-404
9 Herrmann KM. The shikimate pathway as an entry to aromatic seondary metabolis [J]. Plant Physiol,1995, 107: 7-12
10 苏军, 陈睿, 姚玉仙, 陈子强, 宋亚娜, 李刚 转CryIAb水稻对稻田杂草群落组成及多样性的影响[J]. 中国生态农业学报, 2013, 21 (12): 1500-1506 [Su J, Chen R, Yao YX, Chen ZQ, Song YN, Li G. Composition and diversity of weed community in transgenic CryIAb rice field. Chin J Eco-Agric, 2013, 21 (12): 1500-1506]
11 Guadagnuolo R, Clegg J, EIIstrand NC. Relative fitness of transgenic vs. non-transgenic maize × teosinte hybrids: a field evaluation [J]. Ecol Appl, 2006, 16: 1967-1974
12 Crawley MJ, Brown SL, Halls RS, Kohn DD, Rees M. Transgenic crops in natural habitats [J]. Nature, 2001, 409: 682-683
13 苏军, 宋亚娜, 姚玉仙, 陈建民, 吴明基, 李刚, 陈子强. 转CryIAb水稻在不同生长条件下的适合度[J]. 分子植物育种, 2013, 11 (4): 1-8 [Su J,
Song YN, Yao YX, Chen JM, Wu MJ, Li G, Chen ZQ. Fitness of transgenic insecticidal rice under different growing condition. Mol Plant Breed, 2013, 11: 1-8]
14 Wang W, Xia H, Yang X, Xu T. Hong JS, Cai XX, Wang F, Su J, Allison AS, Lu BR. A novel 5-enolpyruvoylshikimate-3-phosphate (EPSP) synthase transgene for glyphosate resistance stimulates growth and fecundity in weedy rice (Oryza sativa) without herbicide [J]. New Phytol, 2013, 202: 679-688
15 丁志勇, 许崇任, 王戎疆. 转Bt基因抗虫棉与常规棉中几种同工酶的比较——转基因植物安全性评价生理指标初探[J]. 生态学报, 2001, 21 (2): 332-336 [Ding ZY, Xu CR, Wang RJ. Comparison of several important isoenzymes between Bt cotton and regular cotton. Acta Ecol Sin, 2001, 21: 332-336]
16 阎凤鸣, 许崇任, Bengtsson M, Witzgall P, Anderson P. 转Bt基因棉挥发性气味的化学成分及其对棉铃虫的电生理活性[J]. 昆虫学报, 2002, 45 (4): 425-429 [ Yan FM, Xu CR, Bengtsson M, Witzgall P, Anderson P. Volatile compositions of transgenic Bt cotton and their electrophysiological effects on the cotton bollworm [J]. Acta Entomol Sin, 2002, 45: 425-429]
17 白树雄. 转基因抗虫玉米次生代谢物质的变化及对亚洲玉米螟寄生性天敌腰带长体茧蜂的影响[D]. 北京: 中国农业科学院, 2011 [Bai SX. The changes of secondary substances in transgenic insect-resistant corn and its effect on the larval parasitoids Macrocentrus cingulum of the Asian corn borer. Beijing: Chinese Academy of Agricultural Sciences, 2011]
18 陈茂. 转基因抗虫、抗病毒水稻对非靶标生物的生态安全性评价[D]. 杭州: 浙江大学, 2005 [Chen M. Ecological safety assessments of transgenic rice with insect or virus resistance on their non-target organisms. Hangzhou: Zhejiang University, 2005]
19 贾乾涛. 转Bt基因水稻重要成分的变化及对昆虫种群动态的影响研究[D]. 武汉: 华中农业大学 [Jia QT. The study on changes of important materials in transgenic Bt rice and effect on insect population dynamic. Wuhan: Huazhong Agricultural University, 2005]
20 Bohan DA, Boffey CW H, Brooks DR, Clark SJ, Dewar AM, Firbank LG, Haughton AJ, Hawes C, Heard MS, May MJ, Osborne JL, Perry JN, Rothery P, Roy DB, Scott RJ, Squire GR, Woiwod IP, Champion GT. Effects on weed and invertebrate abundance and diversity of herbicide management in genetically modified herbicide-tolerant winter-sown oilseed rape [J]. Proc Royal Soc, 2005, 272: 463-474
21 余柳青, 渠开山, 周勇军, 李迪, 刘小川, 张朝贤, 彭于发. 抗除草剂转基因水稻对稻田杂草种群的影响[J]. 中国水稻科学, 2005, 19 (1): 68-73 [Yu LQ, Qu KS, Zhou YJ,Li D, Liu XC, Zhang CX, Peng YF. Effect of transgenic rice with glufosinate-resistance on weed populations in paddy field. Chin J Rice Sci, 2005, 19: 68-73]

相似文献/References:

[1]周宇科,牛向丽,刘永胜.水稻OsGPCR基因的克隆及遗传转化分析[J].应用与环境生物学报,2011,17(01):7.[doi:10.3724/SP.J.1145.2011.00007]
 ZHOU Yuke,NIU Xiangli & LIU Yongsheng.Cloning and Genetic Transformation of Rice OsGPCR Gene[J].Chinese Journal of Applied & Environmental Biology,2011,17(05):7.[doi:10.3724/SP.J.1145.2011.00007]
[2]陈昌冬,牛向丽,刘永胜.水稻锌指蛋白基因OsWIP6的克隆、表达及RNAi载体转化[J].应用与环境生物学报,2012,18(02):200.[doi:10.3724/SP.J.1145.2012.00200]
 CHEN Changdong,NIU Xiangli,LIU Yongsheng.Cloning, Expression and RNAi Vector Transformation of a Zinc Finger Protein Gene OsWIP6 from Rice[J].Chinese Journal of Applied & Environmental Biology,2012,18(05):200.[doi:10.3724/SP.J.1145.2012.00200]
[3]黄鹞,李继坤,强胜,等.复合性状转基因水稻T1c-19向受体水稻及杂草稻的基因漂移[J].应用与环境生物学报,2015,21(06):1112.[doi:10.3724/SP.J.1145.2015.05030]
 HUANG Yao,LI Jikun,QIANG Sheng,et al.Gene flow from transgenic rice T1c-19 with stacked cry1C*/bar genes to weedy and cultivated rice species[J].Chinese Journal of Applied & Environmental Biology,2015,21(05):1112.[doi:10.3724/SP.J.1145.2015.05030]

备注/Memo

备注/Memo:
转基因生物新品种培育科技重大专项(2014ZX08001-003)资助 Supported by the Key Technology Project of Transgenic New Species Cultivation (2014ZX08001-003)
更新日期/Last Update: 2015-10-29