|本期目录/Table of Contents|

[1]杨述章,高兰阳,孙晓春,等.过量表达SlWD6基因增强番茄抗旱和耐盐功能[J].应用与环境生物学报,2015,21(03):413-420.[doi:10.3724/SP.J.1145.2015.01006]
 YANG Shuzhang,GAO Lanyang,SUN Xiaochun,et al.Over-expressing SlWD6 gene to improve drought and salt tolerance of tomato[J].Chinese Journal of Applied & Environmental Biology,2015,21(03):413-420.[doi:10.3724/SP.J.1145.2015.01006]
点击复制

过量表达SlWD6基因增强番茄抗旱和耐盐功能()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
21卷
期数:
2015年03期
页码:
413-420
栏目:
研究论文
出版日期:
2015-06-25

文章信息/Info

Title:
Over-expressing SlWD6 gene to improve drought and salt tolerance of tomato
作者:
杨述章高兰阳孙晓春李会容邓恒刘永胜
四川大学生命科学学院,生物资源与生态环境教育部重点实验室;水力学与山区河流开发保护国家重点实验室 成都 610064
Author(s):
YANG Shuzhang GAO Lanyang SUN Xiaochun LI Huirong DENG Heng LIU Yongsheng
Key Laboratory of Ministry of Education for Bio-resource and Eco-environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
关键词:
番茄WD40蛋白抗旱耐盐SlWD6基因
Keywords:
tomato WD40 protein drought resistance salt resistance SlWD6 gene
分类号:
Q785 : S641.203.4
DOI:
10.3724/SP.J.1145.2015.01006
文献标志码:
A
摘要:
WD40蛋白广泛存在于真核生物体内,在生物体内协助细胞行使多种功能,目前关于WD40蛋白的研究多集中在拟南芥菜和水稻中. 生物信息学分析显示,SlWD6蛋白包含两个保守的WD-repeat结构域,属于WD40家族. 为了解番茄中SlWD6基因的功能,采用RT-PCR方法检测番茄的根、茎、叶、花和不同发育时期果实中SlWD6基因表达量. 利用RT-PCR方法获得SlWD6基因全长,并且构建SlWD6过量表达载体,通过农杆菌介导法获得转基因植株,利用Real-time PCR检测3个独立的转基因株系(WD6-393、WD6-418和WD6-421)中SlWD6基因的表达量,并进行耐盐和抗旱性分析. 结果显示,番茄SlWD6基因为组成型表达,果实各时期表达量较高,在红果时期表达量达到最高;转基因株系中SlWD6基因的表达量显著高于野生型;在干旱和高盐胁迫下,转基因植株叶片脯氨酸(Pro)含量显著高于野生型,丙二醛(MDA)含量与野生型相比则显著降低. 用NaCl和甘露醇介导耐盐和干旱胁迫,SlWD6转基因植株T2代种子的根长和苗长显著高于野生型植株. 综上,SlWD6基因的过量表达能够显著增强番茄的抗旱和耐盐功能.
Abstract:
WD40 proteins widely existent in eukaryotic organisms are important to cell functions and therefore well studied in Arabidopsis and Rice. However, little information is available about the proteins in tomato. Bioinformatics analysis showed that SlWD6 protein has two WD-repeat conserved domains, therefore belonging to the family of WD40 Protein. In order to explore the function of WD40 proteins in tomato, we cloned the full length of SlWD6 gene and detected the SlWD6 gene expression level of the roots, stems, leaves, flowers and different stages of fruits in tomatoes by RT-PCR. Transgenic plants over-expressing SlWD6 were obtained by Agrobacterium mediated transformation. Real-time PCR was used for the detection of SlWD6 gene expression, and three independent transgenic lines (WD6-393, WD6-418, WD6-421) were selected for salt and drought stress analysis. The results suggested that the SlWD6 gene belongs to constitutive expression in tomato, and that the gene expression level is higher in fruit maturation than in other organs, being the highest at the red fruit stage. The expression level of SlWD6 was significantly up-regulated in transgenic lines compared with wild type. The content of proline (Pro) was increased and malonic dialdehyde (MDA) was reduced as compared with the wild type in drought and salt stress growth. The root length and seedling length of transgenic plants are both higher than the wild type under NaCl or mannitol treatment. In addition, over-expressing SlWD6 gene can significantly improve drought and salt tolerance of tomato.

参考文献/References:

1 Smith TF, Gaitatzes C, Saxena K, Neer EJ. The WD repeat: a common architecture for diverse functions [J]. Trends Biochem Sci, 1999, 24 (5): 181-185
2 Fong HK, Hurley JB, Hopkins RS, Miake-Lye R, Johnson MS, Doolittle RF, Simon MI. Repetitive segmental structure of the transducin beta subunit: homology with the CDC4 gene and identification of related mRNAs [J]. P Natl Acad Sci USA, 1986, 83 (7): 2162-2166
3 Neer EJ, Schmidt CJ, Nambudripad R, Smith TF. The ancient regulatory-protein family of WD-repeat proteins [J]. Nature, 1994, 371 (6495): 297-300
4 Lee JH, Kim WT. Regulation of abiotic stress signal transduction by E3 ubiquitin ligases in Arabidopsis [J]. Mol Cells, 2011, 31 (3): 201-208
5 Mishra AK, Puranik S, Prasad M. Structure and regulatory networks of WD40 protein in plants [J]. J Plant Biochem Biot, 2012, 21 (1): 32-39
6 XuC, Min J. Structure and function of WD40 domain proteins [J]. Protein Cell, 2011, 2 (3): 202-214
7 Van Nocker S, Ludwig P. The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function [J]. BMC Genomics, 2003, 4 (1): 50-61
8 Guitton AE, Page DR, Chambrier P, Lionnet C, Faure JE, Grossniklaus U, Berger F. Identification of new members of Fertilisation Independent Seed Polycomb Group pathway involved in the control of seed development in Arabidopsis thaliana [J]. Development, 2004, 131 (12): 2971-2981
9 SimpsonGG, DijkwelPP, QuesadaV, HendersonI, DeanC. FY is an RNA 3′ end-processing factor that interacts with FCA to control theArabidopsisfloral transition [J]. Cell, 2003, 113 (6): 777-787
10 Bouveret R, Sch?nrock N, Gruissem W, Hennig L. Arabidopsis MSI1 functions in photoperiodic flowering time control [J]. Front Plant Sci, 2014, 5 (3): 77-87
11 Deyholos MK, Cavaness GF, Hall B, King E, Punwani J, Van Norman J, Sieburth LE. VARICOSE, a WD-domain protein, is required for leaf blade development [J]. Development, 2003, 130 (26): 6577-6588
12 Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Gray JC. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein [J]. Plant Cell, 1999, 11 (7): 1337-1349
13 Zhong R, Burk DH, Morrison WH, Ye ZH. FRAGILE FIBER3, an Arabidopsis gene encoding a type II inositol polyphosphate 5-phosphatase, is required for secondary wall synthesis and actin organization in fiber cells [J]. Plant Cell, 2004, 16 (12): 3242-3259
14 Fankhauser C, Ulm R. Light-regulated interactions with SPA proteins underlie cryptochrome-mediated gene expression [J]. Gene Dev, 2011, 25 (10): 1004-1009
15 Huang X, Ouyang X, Yang P, Lau OS, Chen L, Wei N, Deng XW. Conversion from CUL4-based COP1–SPA E3 apparatus to UVR8–COP1–SPA complexes underlies a distinct biochemical function of COP1 under UV-B [J]. P Natl Acad Sci USA, 2013, 110 (41): 16669-16674
16 Tsugama D, Liu S, Takano T. A bZIP protein, VIP1, interacts with Arabidopsis heterotrimeric G protein β subunit, AGB1 [J]. Plant Physiol Biochem, 2013, 71: 240-246
17 Han MJ, Jung KH, Yi G, Lee DY, An G. Rice Immature Pollen 1 (RIP1) is a regulator of late pollen development [J]. Plant Cell Physiol, 2006, 47 (11): 1457-1472
18 Huang J, Wang MM, Bao YM, Sun SJ, Pan LJ, Zhang HS. SRWD: a novel WD40 protein subfamily regulated by salt stress in rice (Oryzasativa L.) [J]. Gene, 2008, 424 (1): 71-79
19 梁慧敏, 夏阳, 王太明. 植物抗寒冻、抗旱、耐盐基因工程研究进展[J]. 草业学报, 2003, 12 (3): 1-7 [Liang HM, Xia Y, Wang TM. Progress on cold, drought and salt resistance gene engineering in plants [J]. Acta Prat Sin, 2003, 12 (3): 1-7]
20 罗晓莉, 牛向丽, 黄维藻, 刘永胜. 水稻DDB1基因的表达特性及功能分析[J]. 应用与环境生物学报, 2011, 17 (1): 1-6 [Luo XL, Niu XL, Huang WZ, Liu YS. Expression characteristics and functional analysis of rice DDB1 gene [J]. Chin J Appl Environ Biol, 2011, 17 (1): 1-6]
21 游晓慧, 李威, 陶启长, 孙小芬, 唐克轩. WD40 重复蛋白家族基因Atlg65030调控拟南芥种子的重量与体积[J]. 植物生理学报, 2011, 47 (7): 715-725 [You XH, Li W, Tang QC, Sun XF, Tang KX. At1g65030, a WD40-repeat protein gene, regulates seed mass and size in Arabidopsis [J]. J Plant Physiol, 2011, 47 (7): 715-725]
22 刘继恺, 高永峰, 牛向丽, 刘永胜. 番茄hp1和hp2基因rna共干涉载体的构建及遗传转化[J]. 应用与环境生物学报, 2009, 15 (5): 591-595 [Liu JK, Gao YF, Niu XL, Liu YS. Construction and transformation of co-RNAivector of tomato HP1 and HP2genes [J]. Chin J Appl Environ Biol, 2009, 15 (5): 591-595]
23 赵福庚, 刘友良. 胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展[J]. 植物学报, 1999, 16 (5): 540-546 [Zhao GF, Liu YL. Advances in study on metabolism and regulation of proline in higher plants under stress [J]. Bull Bot, 1999, 16 (5): 540-546]
24 张亚冰, 刘崇怀, 潘兴, 郭景南, 马锋旺. 盐胁迫下不同耐盐性葡萄砧木丙二醛和脯氨酸含量的变化[J]. 河南农业科学, 2006, 4 (3): 86-84 [Zhang YB, Liu CH, Pan X, Guo JN, Ma FW. Changes of MDA and proline contents in grape rootstocks under nacl stress [J]. J Henan Agric Sci, 2006, 4 (3): 86-84]
25 杨红玉, 张学琴. 拟南芥WD40蛋白[J]. 植物生理学通讯, 2008, 44 (5): 1025-1033 [Yang HY, Zhang XQ. WD40 proteins in Arabidopsis [J]. Plant Physiol Commun, 2008, 44 (5): 1025-1033]
26 Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y. Effects of free proline accumulation in petunias under drought stress [J]. J Exp Bot, 2005, 56 (417): 1975-1981
27 丁玉梅, 马龙海, 周晓罡, 姚春馨, 董禄风, 孙茂林. 干旱胁迫下马铃薯叶片脯氨酸、丙二醛含量变化及与耐旱性的相关性分析[J]. 西南农业学报, 2013, 26 (1): 106-110 [Ding YM, Ma LH, Zhou XG, Yao CX, Dong LF, Sun ML. Effects of drought stress on free proline and malonaldedyde contents in potato leaves and correlation analysis of drought-tolerant level among different varieties. Southwest Chin J Agric Sci, 2013, 26 (1): 106-110]

相似文献/References:

[1]葛体达,黄丹枫** 芦波 唐东梅 宋世威.无机氮和有机氮对水培番茄幼苗碳水化合物积累及氮素吸收的影响*[J].应用与环境生物学报,2008,14(05):604.
[2]张春梅,邹志荣,张志新,等.外源亚精胺对模拟干旱胁迫下番茄幼苗活性氧水平和抗氧化系统的影响[J].应用与环境生物学报,2009,15(03):301.[doi:10.3724/SP.J.1145.2009.00301]
 ZHANG Chunmei,ZOU Zhirong,ZHANG Zhixin,et al.Effects of Exogenous Spermidine on Reactive Oxygen Levels and Antioxidative System of Tomato Seedling under Polyethlene Glycol Stress[J].Chinese Journal of Applied & Environmental Biology,2009,15(03):301.[doi:10.3724/SP.J.1145.2009.00301]
[3]刘继恺,高永峰,牛向丽,等.番茄HP1和HP2基因RNA共干涉载体的构建及遗传转化[J].应用与环境生物学报,2009,15(05):591.[doi:10.3724/SP.J.1145.2009.00591]
 LIU Jikai,GAO Yongfeng,NIU Xiangli & LIU Yongsheng.Construction and Transformation of Co-RNAi Vector of Tomato HP1 and HP2 Genes[J].Chinese Journal of Applied & Environmental Biology,2009,15(03):591.[doi:10.3724/SP.J.1145.2009.00591]
[4]崔向超,胡君利,林先贵,等.丛枝菌根真菌与复硝酚钠在番茄育苗中的应用[J].应用与环境生物学报,2012,18(05):843.[doi:10.3724/SP.J.1145.2012.00843]
 CUI Xiangchao,HU Junli,LIN Xiangui,et al.Application of Arbuscular Mycorrhizal Fungi and Compound Sodium Nitrophenolate in Tomato Seedling Growth[J].Chinese Journal of Applied & Environmental Biology,2012,18(03):843.[doi:10.3724/SP.J.1145.2012.00843]
[5]张治国,高永峰,苗敏,等.番茄SlWD1基因的克隆及SlWD1与DDB1的相互作用[J].应用与环境生物学报,2013,19(04):623.[doi:10.3724/SP.J.1145.2013.00623]
 ZHANG Zhiguo,GAO Yongfeng,MIAO Min,et al.Cloning of SlWD1 Gene and Interaction of SlWD1 with DDB1 in Tomato[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):623.[doi:10.3724/SP.J.1145.2013.00623]
[6]朱芸晔,薛冰,王安全,等.番茄bZIP转录因子家族的生物信息学分析[J].应用与环境生物学报,2014,20(05):767.[doi:10.3724/SP.J.1145.2014.01033]
 ZHU Yunye,XUE Bing,WANG Anquan,et al.Comprehensive bioinformatic analysis of bZIP transcription factors in Solanum lycopersicum[J].Chinese Journal of Applied & Environmental Biology,2014,20(03):767.[doi:10.3724/SP.J.1145.2014.01033]
[7]张俊芳,唐晓凤,李欲翔,等.番茄SIZ1-like1基因的克隆与功能[J].应用与环境生物学报,2015,21(03):406.[doi:10.3724/SP.J.1145.2014.12016]
 ZHANG Junfang,TANG Xiaofeng,LI Yuxiang,et al.Cloning and function study of tomato SUMO E3 ligase SIZ1-like1 gene[J].Chinese Journal of Applied & Environmental Biology,2015,21(03):406.[doi:10.3724/SP.J.1145.2014.12016]
[8]郑娜,柯林峰,杨景艳,等.来源于污染土壤的植物根际细菌对番茄幼苗的促生与盐耐受机制[J].应用与环境生物学报,2018,24(01):47.[doi:10.19675/j.cnki.1006-687x.2017.03031]
 ZHENG Na,KE Linfeng,YANG Jingyan,et al.Growth improvement and salt tolerance mechanisms of tomato seedlings mediated by plant growth-promoting rhizobacteria from contaminated soils[J].Chinese Journal of Applied & Environmental Biology,2018,24(03):47.[doi:10.19675/j.cnki.1006-687x.2017.03031]
[9]孙德智,韩晓日,彭靖,等.外源NO和水杨酸对盐胁迫下番茄幼苗光合机构的保护作用[J].应用与环境生物学报,2018,24(03):457.[doi:10.19675/j.cnki.1006-687x.2017.08019]
 SUN Dezhi**,HAN Xiaori,PENG Jing,et al.Protective effect of exogenous nitric oxide and salicylic acid on the photosynthetic apparatus of tomato seedling leaves under NaCl stress[J].Chinese Journal of Applied & Environmental Biology,2018,24(03):457.[doi:10.19675/j.cnki.1006-687x.2017.08019]
[10]曾立 程万里 余豪 陈珍 黄典 翟义乐 吴仁锋 张吉斌**.多粘类芽胞杆菌KM2501-1发酵液对番茄根结线虫的防治效果[J].应用与环境生物学报,2021,27(01):1.[doi:10.19675/j.cnki.1006-687x.2020.03003]
 ZENG Li,CHENG Wanli,YU Hao,et al.Controlling efficiency of Paenibacillus polymyxa KM2501-1 fermentation liquid against tomato root-knot nematode[J].Chinese Journal of Applied & Environmental Biology,2021,27(03):1.[doi:10.19675/j.cnki.1006-687x.2020.03003]

备注/Memo

备注/Memo:
国家杰出青年科学基金项目(30825030)、国家自然科学基金项目(31171179,90717110)和国家973计划项目(2011CB100401)资助 Supported by the National Science Fund of China for Distinguished Young Scholars (30825030), the National Natural Science Foundation of China (31171179, 90717110) and the State Key Basic R & D Program of China (973 Program, 2011CB100401)
更新日期/Last Update: 2015-06-23