|本期目录/Table of Contents|

[1]刘文亭,卫智军,吕世杰,等.短花针茅荒漠草原不同组织尺度地上生物量[J].应用与环境生物学报,2015,21(05):912-918.[doi:10.3724/SP.J.1145.2014.11019]
 LIU Wenting,WEI Zhijun,L? Shijie,et al.Above-ground biomass in Stipa breviflora desert grassland at different organizational scales[J].Chinese Journal of Applied & Environmental Biology,2015,21(05):912-918.[doi:10.3724/SP.J.1145.2014.11019]
点击复制

短花针茅荒漠草原不同组织尺度地上生物量()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
21卷
期数:
2015年05期
页码:
912-918
栏目:
研究论文
出版日期:
2015-10-25

文章信息/Info

Title:
Above-ground biomass in Stipa breviflora desert grassland at different organizational scales
作者:
刘文亭 卫智军 吕世杰 孙世贤 代景忠 闫宝龙
1内蒙古农业大学生态环境学院 呼和浩特 010019 2内蒙古农业大学理学院 呼和浩特 010018 3中国农业科学院草原研究所 呼和浩特 010010
Author(s):
LIU Wenting WEI Zhijun L? Shijie SUN Shixian DAI Jingzhong YAN Baolong1
1College of Ecology and Environmental Science, Inner Mongolia Agricultural University, Huhhot 010019, China 2College of Sciences, Inner Mongolia Agricultural University, Huhhot 010018, China 3Institute of Grassland Research, Chinese Academy of Agriculture Sciences, Hohhot 010010, China
关键词:
地上生物量层次分析法荒漠草原组织尺度功能群短花针茅
Keywords:
above-ground biomass analytic hierarchy process desert grassland organizational scale plant functional group Stipa breviflora
分类号:
Q948.1 : S812.29
DOI:
10.3724/SP.J.1145.2014.11019
文献标志码:
A
摘要:
以内蒙古短花针茅荒漠草地生物量为研究对象,比较分析个体、种群、功能群、群落尺度地上生物量的关联与变异. 结果显示:(1)个体尺度上,高产草地的兴安胡枝子生物量最大,为(22.96 ± 7.31) g/株,羊草生物量最小,为(0.16 ± 0.69) g/株;种群尺度上,兴安胡枝子生物量较小,羊草的生物量较大;在功能群尺度上,兴安胡枝子生物量在灌木、半灌木该功能群的权重值为0.144,羊草的生物量在多年生禾草的权重值为0.303. (2)种群尺度上短花针茅在低产草地生物量最高(80.33 g/m2 ± 5.15 g/m2),在个体尺度生物量同样最高(6.99 g/株 ± 0.68 g/株);蒙古葱在种群尺度下生物量最低(0.12 g/m2 ± 0.10 g/m2),在个体尺度下也最低(0.01 g/株 ± 0.05 g/株). (3)高产草地的变异系数均值几乎都大于低产草地的变异系数均值,且随个体、种群、功能群、群落尺度的递进呈现下降趋势. 本研究表明,从植物不同组织尺度研究短花针茅荒漠草原地上生物量,能够更好地揭示群落生物量置配过程和资源利用,这对于不同地区物种潜在规律的比较以及科学地实施区域生态系统保护具有重要意义.
Abstract:
The patterns of the above-ground biomass and transformation of plant organizational scale (individual, population, functional group, and community) are closely related in the grassland ecosystem. Manifold organization scale analysis based on analytic hierarchy process may reveal mechanisms of above-ground biomass in Stipa breviflora desert grassland. In this research we compared high-yield grassland (Manual irrigation grassland) and low-yield grassland (Original ecology grassland) within Stipa breviflora desert grassland for the association and variability of above-ground biomass to individual, population, functional group, and community scale. The results showed that at the individual scale, Lespedeza davurica had the maximum biomass (22.96 ± 7.31 g individual-1) and Leymus chinensis the minimum (0.16 ± 0.69 g individual-1) in high-yield grassland. At population scale, L. chinensis had larger biomass than L. davurica. The biomass weight value of L. davurica in shrubs and semi-shrubs was 0.144 and L. chinensis in perennial grasses 0.303 at functional group scale. In low-yield grassland, at both individual and population scales, S. breviflora had the highest biomass and Allium mongolicum the lowest biomass. At all organizational scales, the average variation coefficient was larger in the high-yield grassland biomass than low-yield grassland biomass, showing an declining trend with upscaling of individual, population, functional group, and community scales. The above-ground biomass research for different plant organization scales in S. breviflora desert grassland could reveal the community biomass allocation process and resource utilization, which is of great significance in comparison of this potential species pattern at various areas and scientific implementation of the regional ecosystem protection.

参考文献/References:

1 Parton WJ, Scurlock JMO, Ojima DS, Schimel DS, Hall DO. Impact of climate-change on grassland production and soil carbon worldwide [J]. Global Change Biol, 1995, 1 (1): 13-22
2 Hall DO, Scurlock JMO. Climate change and productivity of natural grasslands [J]. Ann Bot-London, 1991, 67 (1): 49-55
3 Scurlock JMO, Johnson K, Olson RJ. Estimating net primary productivity from grassland biomass dynamics measurements [J]. Global Change Biol, 2002, 8 (8): 736-753
4 Turner WR. Interactions among spatial scales constrain species distributions in fragmented urban landscapes [J]. Ecol Soc, 2006, 11 (2): 6
5 Wheatley M, Johnson C. Factors limiting our understanding of ecological scale [J]. Ecol Comp, 2009, 6 (2): 150-159
6 Bai YF, Han XG, Wu JG, Chen ZZ, Li LH. Ecosystem stability and compensatory effects in the Inner Mongolia grassland [J]. Nature, 2004, 431 (7005): 181-184
7 杨持. 生态学[M]. 北京: 高等教育出版社, 2008 [Yang C. Ecology [M]. Beijing: Higher Education Press, 2008]
8 王敏, 苏永中, 杨荣, 杨晓. 黑河中游荒漠草地地上和地下生物量的分配格局[J]. 植物生态学报, 2013, 37 (3): 209-219 [Wang M, Su ZY, Yang R, Yang X. Allocation patterns of above- and belowground biomass in desert grassland in the middle reaches of Heihe River, Gansu Province, China [J]. Chin J Plant Ecol, 2013, 37 (3): 209-219]
9 陈文年, 吴彦, 吴宁, 罗鹏. 高山草甸群落生物量在融雪梯度上的变化. 应用与环境生物学报, 2009, 15 (6): 745-749 [Chen WN, Wu Y, Wu N, Luo P. Changes in community biomass along snow-melting gradientin alpine meadow. Chin J Appl Environ Biol, 2009, 15 (6): 745-749]
10 肖玉, 陈米贵, 周杰, 郭正刚. 青藏高原腹地青藏苔草草原不同退化程度的植物群落特征. 应用与环境生物学报, 2014, 20 (4): 639-645 [Xiao Y, Chen MG, Zhou J, Guo ZG. Plant community features of Carex moorcroftii steppe at different degradation degrees in the interior of Qinghai-Tibetan Plateau. Chin J Appl Environ Biol, 2014, 20 (4): 639-645]
11 徐波, 王金牛, 石福孙, 高景, 吴宁. 青藏高原东缘野生暗紫贝母生物量分配格局对高山生态环境的适应[J]. 植物生态学报, 2013, 37 (3): 187-196 [Xu B, Wang JN, Shi FS, Gao J, Wu N. Adaptation of biomass allocation patterns of wild Fritillaria unibracteata to alpine environment in the eastern Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2013, 37 (3): 187-196]
12 卫智军, 韩国栋, 赵钢, 李德新. 中国荒漠草原生态系统研究[M]. 北京: 科学出版社, 2013 [Wei ZJ, Han GD, Zang G, Li DX. Resaerch of Chinese Desert Grassland Ecosystem [M]. Beijing: Science Press, 2013]
13 张炳江. 层次分析法及其应用案例[M]. 北京: 电子工业出版社, 2014 [Zhang BJ. Analytic Hierarchy Process and application case [M]. Beijing: Electronic Industry Press, 2014]
14 Stearns SC. The Evolution of Life Histories [M]. Oxford: Oxford University Press, 1992
15 袁自强, 魏盼盼, 高本强, 张荣. 取样尺度对亚高寒草甸物种多样性与生产力关系的影响[J]. 植物生态学报, 2012, 36 (12): 1248-1255 [Yang ZQ, Wei PP, Gao BQ, Zhang R. Effect of sampling scale on the relationship between species diversity and productivity in subalpine meadows [J]. Chin J Plant Ecol, 36 (12): 1248-1255]
16 彭闪江, 黄忠良, 彭少麟, 徐国良. 不同空间尺度下的肉果植物扩散过程和机理[J]. 生态学报, 2004, 23 (4): 777-785 [Peng SJ, Huang ZL, Peng SL, Xu GL. The processes and mechanisms of the dispersal of fleshy-fruited plants at different spatial scales [J]. Acta Ecol Sin, 2004, 23 (4): 777-785]
17 王鑫厅, 梁存柱, 王炜. 尺度与密度: 测定不同尺度下的种群密度[J]. 植物生态学报, 2013, 37 (2): 104-110 [Wang XT, Liang CZ, Wang W. Scale and density: measuring local neighborhood density at different spatial scales [J]. Chin J Plant Ecol, 37 (2): 104-110]
18 马克明,祖元刚. 植被格局的分形特征[J]. 植物生态学报, 2000, 24 (1): 111-117 [Mang KM, Zu YG. Fractal properties of vegetation pattern [J]. Chin J Plant Ecol, 2000, 24 (1): 111-117]
19 Weiner J. Allocation, plasticity and allometry in plants [J]. Persp Plant Ecol Evol Syst, 2004, 6 (4): 207-215
20 Tilman D, Lehman CL, Thomson KT. Plant diversity and ecosystem productivity: theoretical considerations [J]. PNAS, 1997, 94 (5): 1857-1861
21 杨继. 植物种内形态变异的机制及其研究方法[J]. 武汉植物学研究, 1991, 9 (2): 185-195 [Infraspecific variation in plant and the exploring methods [J]. J Wuhan Bot Res, 9 (2): 185-195]
22 庞广昌, 姜冬梅. 群体遗传多样性和数据分析[J]. 林业科学, 1995, 31 (6): 543-550 [Pang GC, Jiang DM. Population genetic diversity and data analysis [J]. Sci Silv Sin, 1995, 31 (6): 543-550]
23 黄海侠, 杨晓东, 孙宝伟, 张志浩, 阎恩荣. 浙江天童常绿植物当年生与往年生叶片性状的变异与关联[J]. 植物生态学报, 2013, 37 (10): 912-921 [Huang HX, Yang XD, Sun BW, Zhang ZH, Yan ER. Variability and association of leaf traits between current-year and former-year leaves in evergreen trees in Tiantong, Zhejiang, China [J]. Chin J Plant Ecol, 2013, 37 (10): 912-921]
24 艾沙江·阿不都沙拉木, 谭敦炎, 吾买尔夏提·塔汉. 新疆郁金香营养生长、个体大小和开花次序对繁殖分配的影响[J]. 生物多样性, 2012, 20 (3): 391-399 [Abdusalam A, Tan DY, Tahan O. Effects of vegetative growth, plant size and flowering order on sexual reproduction allocation of Tulipa sinkiangensis [J]. Biodiv Sci, 2012, 20 (3): 391-399]
25 陶冶, 张元明. 准噶尔荒漠6种类短命植物生物量分配与异速生长关系[J]. 草业学报, 2014, 23 (2): 38-48 [Biomass allocation patterns and allometric relationships of six ephemeroid species in Junggar Basin, China [J]. Acta Pratacult Sin, 2014, 23 (2): 38-48]
26 Grime JP. Benefits of plant diversity to ecosystems: immediate, filter and founder effects [J]. J Ecol, 1998, 86 (6): 902-910
27 Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C. Effects of biodiversity on the functioning of trophic groups and ecosystems [J]. Nature, 2006, 443 (7114): 989-992
28 白永飞, 陈佐忠. 锡林河流域羊草草原植物种群和功能群的长期变异性及其对群落稳定性的影响[J]. 植物生态学报, 2000, 24 (6): 641-647 [Bai YF, Chen ZZ. Effects of long-term variability of plant species and functional groups on stability of a Leymus Chinensis community in the Xilin river basin, Inner Mongolia [J]. Chin J Plant Ecol, 2000, 24 (6): 641-647]

相似文献/References:

[1]朱源,康慕谊,刘全儒,等.贺兰山高山草甸生物多样性和地上生物量的关系[J].应用与环境生物学报,2007,13(06):771.
 ZHU Yuan,et al..Relationship Between Biodiversity and Aboveground Biomass in Alpine Meadow on Mt. Helan, China[J].Chinese Journal of Applied & Environmental Biology,2007,13(05):771.
[2]肖玉,陈米贵,周杰,等.青藏高原腹地青藏苔草草原不同退化程度的植物群落特征[J].应用与环境生物学报,2014,20(04):639.[doi:10.3724/SP.J.1145.2014.01052]
 XIAO Yu,CHEN Migui,ZHOU Jie,et al.Plant community features of Carex moorcroftii steppe at different degradation degrees in the interior of Qinghai-Tibetan Plateau[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):639.[doi:10.3724/SP.J.1145.2014.01052]
[3]薄正熙,游成铭,胡中民,等.氮素与水分添加对内蒙古温带典型草原生物量的影响[J].应用与环境生物学报,2017,23(04):658.[doi:10.3724/SP.J.1145.2016.07015]
 BO Zhengxi,YOU Chengming,et al.Determination of antibiotic activity of myxobacteria and their correlation with environmental factors[J].Chinese Journal of Applied & Environmental Biology,2017,23(05):658.[doi:10.3724/SP.J.1145.2016.07015]
[4]王金枝,颜亮,吴海东,等.基于层次分析法研究藏北高寒草地退化的影响因素[J].应用与环境生物学报,2020,26(01):17.[doi:10.19675/j.cnki.1006-687x.2019.02016]
 WANG Jinzhi,YAN Liang,WU Haidong,et al.Study of alpine grassland degradation in northern Tibet based on an analytical hierarchy process[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):17.[doi:10.19675/j.cnki.1006-687x.2019.02016]

备注/Memo

备注/Memo:
国家自然科学基金项目(31460126)、国家科技支撑计划项目(2012BAD13B00)和农业部公益性行业(农业)科研专项(201003019)资助 Supported by the National Natural Science Foundation of China (31460126), the National Sci-tech Pillar Project of China (2012BAD13B00), and the National Agriculture Public Welfare Industry Research Project of China (201003019)
更新日期/Last Update: 2015-10-29