|本期目录/Table of Contents|

[1]宋张杨,马婷婷,周燕,等.不同根瘤菌中突变cysDN基因对硫酸盐同化途径的影响[J].应用与环境生物学报,2015,21(02):242-247.[doi:10.3724/SP.J.1145.2014.10020]
 SONG Zhangyang,MA Tingting,ZHOU Yan,et al.Effect of cysDN genes in different rhziobium on the sulfate assimilation pathway[J].Chinese Journal of Applied & Environmental Biology,2015,21(02):242-247.[doi:10.3724/SP.J.1145.2014.10020]
点击复制

不同根瘤菌中突变cysDN基因对硫酸盐同化途径的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
21卷
期数:
2015年02期
页码:
242-247
栏目:
研究论文
出版日期:
2015-04-25

文章信息/Info

Title:
Effect of cysDN genes in different rhziobium on the sulfate assimilation pathway
作者:
宋张杨 马婷婷 周燕 唐咸来 武波 李俊芳 申佩弘
1广西大学生命科学与技术学院 南宁 530005 2亚热带农业生物资源保护与利用国家重点实验室 南宁 530005 3广西职业技术学院食品与生物技术系 南宁 530226 4广西壮族自治区科学技术厅 南宁  530012 5广西民族师范学院 崇左 532200
Author(s):
SONG Zhangyang MA Tingting ZHOU Yan TANG Xianlai WU Bo LI Junfang SHEN Peihong
1College of Life Science and Technology, Guangxi University, Nanning 530005, China 2State Key Laboratory for Conservation and Utilization of Agricultural Bioresources in the Subtropics, Nanning 530005, China 3Food and Biotechnology Department, GuangXi Vocational and Technical College, Nanning 530226, China 4Guangxi Provincial Department of Science and Technology, Nanning 530012, China 5Guangxi Normal University for Nationalities, Chongzuo 532200, China
关键词:
cysDN硫酸盐同化途径费氏中华根瘤菌苜蓿中华根瘤菌大豆慢生根瘤菌同源双交换植株实验
Keywords:
cysDN sulfate assimilation Sinorhizobium fredii Sinorhizobium meliloti Bradyrhizobium japonicum homologous double crossover recombination plant test
分类号:
Q78 : S154.381
DOI:
10.3724/SP.J.1145.2014.10020
文献标志码:
A
摘要:
硫是生物体必须的元素,根瘤菌结瘤因子的硫化修饰与其宿主范围和识别效率有着重要关系,实验室前期研究中突变费氏中华根瘤菌的cysDN基因后,突变体不能利用硫酸盐生长,这与Sinorhizobium sp. BR816的cysD基因突变后的现象不同,两株菌的硫酸盐同化途径中可能存在差异. 为探讨不同根瘤菌cysDN基因对硫酸盐同化途径的影响,本研究利用同源交换的方法构建费氏中华根瘤菌WGF03、费氏中华根瘤菌HN01、苜蓿中华根瘤菌14500及大豆慢生根瘤菌15606的cysDN突变体,ΔcysDN-WGF03、ΔcysDN-HN01、ΔcysDN-14500和cysNR-15606,对突变体的硫源利用情况和植株结瘤情况进行研究. 结果发现,ΔcysDN-WGF03和ΔcysDN-HN01失去利用硫酸盐的能力;ΔcysDN-14500能微弱地利用硫酸盐生长,生长量约为野生菌株的1/3左右;cysNR-15606对硫酸盐的利用与野生菌株相比无明显差别. 植株实验结果显示,ΔcysDN-WGF03、ΔcysDN-HN01和ΔcysDN-14500在平均瘤数、平均瘤重、平均植株干重和固氮酶活性方面均表现出显著降低,而突变体的回补体能够恢复硫酸盐的利用能力及与植株的共生固氮能力. 这说明cysDN基因在费氏中华根瘤菌WGF03、费氏中华根瘤菌HN01和苜蓿中华根瘤菌14500硫酸盐同化途径中起着关键影响,而该基因在大豆慢生根瘤菌15606的影响并不明显. 本研究表明,cysDN基因在不同根瘤菌中所起的作用不同,不同根瘤菌的硫酸盐同化方式也存在差异.
Abstract:
Sulfur is an essential element for organism, and sulfate modification of Nod factor plays a vital role in the host range and recognition efficiency. Our previous study constructed the mutants of Sinorhizobium fredii WGF03 through inactivating in cysDN by homologous single-crossover recombination. However, the cysDN mutants of S. fredii could not utilize sulfate as sulfur source, while the cysDN mutants of Sinorhizobium BR816 could grow weakly on medium with sulfate as sulfur source. This study aimed to understand the difference in activating sulfate by cysDN genes in different species of rhizobium. The cysDN mutants of S. fredii WGF03, S. fredii HN01 S. meliloti 14500 and B. japonicum 15606 were constructed by using homologous recombination: ΔcysDN-WGF03, ΔcysDN-HN01, ΔcysDN-14500 and cysNR -14500. Then the sulfur source utilization and plant tests of mutants were studied. The results showed that ΔcysDN-WGF03 and ΔcysDN-HN01 could not grow on the medium of sulfate; ΔcysDN-14500 could grow on medium with sulfate as sulfur source, but with only 30% growth of the wild type strain; there was no obvious difference in utilization of various sulfur sources by cysNR-15606 and the wild strain. Plant tests showed that the plant inoculated with ΔcysDN-WGF03, ΔcysDN-HN01 and Δ cysDN-14500 showed significantly lower average nodules number, nodules weight, plant dry weight and nitrogenase activity than wild type strains, but the complementary strains could restore the ability of using sulfate and plant symbiotic nitrogen fixation. The results indicated that cysDN genes play a key role in sulfate assimilation pathway of S. fredii WGF03, S. fredii HN01 and S. meliloti 14500, but not for B. japonicum 15606. Different species of rhizobium cysDN have different ways to activate sulfate.

参考文献/References:

1 张苏艳, 刘园园, 李慧敏, 张耀相. 生物固氮细菌的应用[J]. 畜牧兽医杂志, 2010, 29 (4): 40-41 [Zhang SY, Liu YY, Li HM, ZhangYX. Discussions on application of biological nitrogen fixing bacteria [J]. J Anim Sci Vet Med, 2010, 29 (4): 40-41]
2 Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC. How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model [J]. Nat Rev Microbiol., 2007, 5 (8): 619-633
3 Kopriva S, Büchert T, Fritz G, Suter M, Benda R, Schünemann V, Koprivova A, Schürmann P, Trautwein AX, Kroneck PM, Brunold C. The presence of an iron-sulfur cluster in adenosine 5’-phosphosulfate reductase separates organisms utilizing adenosine 5’-phosphosulfate and phosphoadenosine 5’-phosphosulfate for sulfate assimilation [J]. J Biol Chem, 2002, 277 (24): 21786-21791
4 White MF, Dillingham MS. Iron–sulphur clusters in nucleic acid processing enzymes [J]. Curr Opin Struct Biol, 2012, 22 (1): 94-100
5 Kopriva S. Regulation of sulfate assimilation in Arabidopsis and beyond [J]. Ann Bot, 2006, 97: 479-495
6 张武, 田润, 申佩弘, 蒋承建, 许兢, 李俊芳, 武波. 费氏中华根瘤菌15142的cysDN基因克隆及其相关功能[J]. 应用与环境生物学报, 2011, 17 (6): 864-868 [Zhang W, Tian R, Shen PH, Jiang CJ, Xu J, Li JF, Wu B. Cloning and related function of cysDN in Sinorhizobium fredii 15142. Chin J Appl Environ Biol, 2011, 17 (6): 864-868]
7 Snoeck C, Verreth C, Hernández-Lucas I, Martínez-Romero E, Vanderleyden J. Identification of a third sulfate activation system in Sinorhizobium sp. strain BR816: the CysDN sulfate activation complex [J]. Appl Environ Microbiol, 2003, 69 (4): 2006-2014
8 Sachs JL, Kembel SW, Lau AH, Simms EL. In Situ phylogenetic structure and diversity of wild Bradyrhizobium communities [J]. Appl Environ Microbiol, 2009, 75 (14): 4727-4735.
9 Figurski D, Helinski DR. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans [J]. Proc Natl Acad Sci USA, 1979, 76 (4): 1648-1652
10 Tang JL, Gough CL, Barber CE, Dow JM, Daniels MJ. Molecular cloning of protease gene(s) from Xanthomonas campestris pv. campestris: expression in Escherichia coli and role in pathogenicity [J]. Mol Gen Genet, 1987, 210: 443-448
11 陈文新, 汪恩涛. 中国根瘤菌[M]. 北京: 科学出版社, 2011: 10-22 [Chen WX, Wang ET. Chinese Rhizobia [M]. Beijing: Science Press, 2011: 10-22]
12 鲁鸿佩. 根瘤菌对紫花苜蓿产草量的影响试验研究[J]. 草原与草坪, 2007, 2: 56-59
13 黄新, 王亚琴, 刘建新, 俞照正, 鲍明道, 陈维虎, 石吉天, 孙红霞. 接种根瘤菌对不同紫花苜蓿品种结瘤和生物学产量的影响[J]. 浙江农业学报, 2005, 17 (6): 391-394 [Huang X, Wang YQ, Liu JX, Yu ZZ, Bao MD, Chen WH, Shi JT, Sun HX. Effect of inoculating rhizobial strains on nodulation and biomass yield of alfalfa, Medicago sativa [J]. Acta Agric Zhejiangensis, 2005, 17 (6): 391-394]
14 马婷婷, 张健, 粟月萍, 宋张杨, 唐咸来, 申佩弘, 武波. Sinorhizobium fredii WGF03胞外多糖分泌相关基因exoD功能初探[J]. 中国生物工程杂志, 2014, 34 (6): 47-54 [Ma TT, Zhang J, Su YP, Song ZY, Tang XL, Shen PH, Wu B. A preliminary study of exoD gene relating exopolysaccharides secretion in Sinorhizobium fredii WGF03 [J]. China Biotechnol, 2014, 34 (6): 47-54]
15 Schwedock JS, Liu C, Leyh TS, Long SR. Rhizobium meliloti NodP and NodQ form a multifunctional sulfate-activating complex requiring GTP for activity [J]. J Bacteriol, 1994, 176 (22): 7055-7064
16 Abola AP, Willits MG, WANG RC, Long SR. Reduction of adenosine-5’-phosphosulfate instead of 3’-phosphoadenosine-5’-phosphosulfate in cysteine biosynthesis by Rhizobium meliloti and other members of the family Rhizobiaceae [J]. J Bacteriol, 1999, 181 (17): 5280-5287

相似文献/References:

[1]张武,田润,申佩弘,等.费氏中华根瘤菌15142的cysDN基因克隆及其相关功能[J].应用与环境生物学报,2011,17(06):864.[doi:10.3724/SP.J.1145.2011.00864]
 ZHANG Wu,TIAN Run,SHEN Peihong,et al.Cloning and Related Function of cysDN in Sinorhizobium fredii 15142[J].Chinese Journal of Applied & Environmental Biology,2011,17(02):864.[doi:10.3724/SP.J.1145.2011.00864]

备注/Memo

备注/Memo:
国家重点基础研究发展计划项目(2010CB126502)资助 Supported by the National Key Basic Research & Development Program of China (2010CB126502)
更新日期/Last Update: 2015-04-27