|本期目录/Table of Contents|

 ZHANG Lijuan,FU Bo,LUO Kan,et al.Microbial community characterization of homoacetogen enrichment culture and its acetate production through syngas bioconversion[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):1052-1057.[doi:10.3724/SP.J.1145.2014.04040]





Microbial community characterization of homoacetogen enrichment culture and its acetate production through syngas bioconversion
张丽娟 符波 罗衎 刘和
江南大学环境与土木工程学院 无锡 214122
School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
homoacetogen syngas enrichment acetate production microbial community
Q939.9 : TK6
合成气生物转化是一项具有巨大应用前景的技术,对大力开发可再生资源和促进国家可持续发展具有重要意义. 本研究采集牛粪样品进行同型产乙酸菌富集培养,利用富集物分别在中温(37 ℃)和高温(55 ℃)条件下生物转化H2/CO2气体,通过克隆文库技术分析中温和高温富集物的微生物群落组成,GC气相色谱法检测气体转化产生的挥发性脂肪酸(VFAs)浓度. 结果表明,牛粪样品中温富集物和高温富集物同型产乙酸菌数量分别增长了77倍和189倍,富集物中同型产乙酸菌分布于Clostridium、Oxobacter、Caloramator、Thermoanaerobacter及Moorella属,其中Clostridium属最多. 同型产乙酸菌富集物在中温和高温条件下利用H2/CO2气体生成的最高乙酸浓度分别为43和38 mmol/L. 该富集物可稳定、持续、有效地生物转化H2/CO2气体产乙酸,并且偏碱性、中温条件有利于提高转化效率. 本文研究表明这种区别于传统纯培养法的混合培养技术能够达到产乙酸的目的,可为合成气生物转化提供新思路.
Bioconversion of syngas to generate acid or bioethanol through a microbial route is a possible alternative fuel resource. This research aimed to study the microbial community structure and population dynamic during the homoacetogen enrichment from cow manure and the process of syngas bioconversion for acetate production. 16S rRNA gene clone library was used to reveal the community structure during enrichment. GC-Solution was used to detect volatile fatty acid (VFA) concentration. The copy number of fhs gene indicating homoacetogens in the enriched cultures was increased by approximately 77 and 189 times under mesophilic and thermophilic conditions, respectively. The major homoacetogenic genus in the enriched samples belonged to Clostridium, Oxobacter, Caloramator, Thermoanaerobacter and Moorella. The maximum acetate concentrations were 43 and 38 mmol/L under mesophilic and thermophilic conditions, respectively. The enriched cultures could produce acetate stably, efficiently and constantly by catalyzing H2/CO2 gas. Appropriately lower reaction temperature and raised pH value are helpful for improving the efficiency of syngas bioconversion. The results showed that based on the mixed culture biotechnology acetate can be produced from H2/CO2, which offers a new idea for bioconversion of syngas.


1 Demirbas A. Progress and recent trends in biofuels [J]. Prog Energy Combust Sci, 2007, 33 (1): 1-18
2 Bredwell MD, Srivastava P, Worden RM. Reactor design issues for synthesis-gas fermentations [J]. Biotechnol Progr, 1999, 15 (5): 834-844
3 Drake HL, Küsel K, Matthies C. Ecological consequences of the phylogenetic and physiological diversities of acetogens [J]. Antonie Van Leeuwenhoek, 2002, 81: 203-213
4 郭蔚, 刘成, 邹少兰, 张敏华. 同型乙酸茵研究进展及应用前景[J]. 应用与环境生物学报, 2006, 12 (6): 874-877 [Guo W, Liu C, Zou SL, Zhang MH. Progress in research and application of homoacetoge [J]. Chin J Appl Environ Biol, 2006, 12 (6): 874-877]
5 Phillips JR, Clausen EC, Gaddy JL. Synthesis gas as substrate for the biological production of fuels and chemicals [J]. Appl Biochem Biotechnol, 1994, 45 (1): 145-157
6 Cotter JL, Chinn MS, Grunden AM. Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas [J]. Enzyme Microb Technol, 2009, 44 (5): 281-288
7 Kleerebezem R, van Loosdrecht MC. Mixed culture biotechnology for bioenergy production [J]. Curr Opin Biotechnol, 2007, 18 (3): 207-212
8 Oh SE, Ginkel SV, Logan BE. The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production [J]. Environ Sci Technol, 2003, 37 (22): 5186-5190
9 马琳. 厌氧消化反应器中同型产乙酸菌产乙酸机制研究[D]. 无锡: 江南大学, 2012 [Ma L. Mechanism of acetate production by homoacetogens in anaerobic digester [D]. Wuxi: Jiangnan University, 2012]
10 Xu KW, Liu H, Chen J. Effect of classic methanogenic inhibitors on the quantity and diversity of archaeal community and the reductive homoacetogenic activity during the process of anaerobic sludge digestion [J]. Bioresour Technol, 2010, 101 (8): 2600-2607
11 Liu XL, Liu H, Chen YY, Du GC, Chen J. Effects of organic matter and initial carbon–nitrogen ratio on the bioconversion of volatile fatty acids from sewage sludge [J]. J Chem Technol Biotechnol, 2008, 83 (7): 1049-1055
12 Xu KW, Liu H, Du GC, Chen J. Real-time PCR assays targeting formyltetrahydrofolate synthetase gene to enumerate acetogens in natural and engineered environments [J]. Anaerobe, 2009, 15 (5): 204-13
13 王晋. 厌氧发酵产酸微生物种群生态及互营关系研究[D]. 无锡: 江南大学, 2013. [Wang J. Research of microbial community ecology and the trophic link during acidogenic fermentation [D]. Wuxi: Jiangnan University, 2013]
14 杨旭, 许科伟, 刘和, 任春, 汤玉平, 黄欣. 油气藏上方土壤中甲烷氧化菌群落结构分析—以沾化凹陷某油气田为例[J]. 应用与环境生物学报, 2013, 19 (3): 478-483 [Yang X, Xu KW, Liu H, Ren C, Tang YP, Huang X. Analysis of methane-oxidizing bacteria community structure in the soil above oil and gas reservoirs - an oil and gas field of Zhanhua depression as an example [J]. Chin J Appl Environ Biol, 2013, 19 (3): 478-483]
15 Ryan P, Forbes C, McHugh S, O’Reilly C, Fleming GT, Colleran E. Enrichment of acetogenic bacteria in high rate anaerobic reactors under mesophilic and thermophilic conditions [J]. Water Res, 2010, 44 (14): 4261-4269
16 Drake HL, Küsel K, Matthies C. Acetogenic Prokaryotes [M]. Springer, 2006, 2: 354-420
17 Küsel K, Karnholz A, Trinkwalter T, Devereux R, Acker G, Drake HL. Physiological ecology of Clostridium glycolicum RD-1, an aerotolerant acetogen isolated from sea grass roots [J]. Appl Environ Microbiol, 2001, 67 (10): 4734-4741
18 Kane MD, Brauman A, Breznak JA. Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus [J]. Arch Microbiol, 1991, 156 (2): 99-104
19 Ledbetter RN, Connon SA, Neal AL, Dohnalkova A, Magnuson TS. Biogenic mineral production by a novel arsenic-metabolizing thermophilic bacterium from the Alvord Basin, Oregon [J]. Appl Environ Microbiol, 2007, 73 (18): 5928-5936
20 Slobodkin A, Reysenbach AL, Mayer F, Wiegel J. Isolation and characterization of the homoacetogenic thermophilic bacterium Moorella glycerini sp. nov [J]. Int J System Bacteriol, 1997, 47 (4): 969-974
21 任南琪, 王爱杰, 马放. 产酸发酵微生物生理生态学[M]. 北京: 科学出版社, 2005: 51-135 [Ren NQ, Wang AJ, Ma F. Physiological and Ecological of Acidogenic Fermentation Microorganism [M]. Beijing: Science Press, 2005: 51-135]
22 Kundiyana DK, Wilkins MR, Maddipati P, Huhnke RL. Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by “Clostridium ragsdalei” [J]. Bioresour Technol, 2011, 102 (10): 5794-5799
23 Vega J, Clausen E, Gaddy J. Design of bioreactors for coal synthesis gas fermentations [J]. Resour Conserv Recycl, 1990, 3 (2): 149-160
24 Klasson K, Ackerson M, Clausen E, Gaddy J. Biological conversion of coal and coal-derived synthesis gas [J]. Fuel, 1993, 72 (12): 1673-1678
25 Wagner C, Grie?hammerA, Drake HL. Acetogenic capacities and the anaerobic turnover of carbon in a kansas prairie soil [J]. Appl Environ Microbiol, 1996, 62 (2): 494-500
26 Ravinder T, Swamy M, Seenayya G, Reddy G. Clostridium lentocellum SG6–a potential organism for fermentation of cellulose to acetic acid [J]. Bioresour Technol, 2001, 80 (3): 171-177
27 Henstra AM, Sipma J, Rinzema A, Stams AJ. Microbiology of synthesis gas fermentation for biofuel production [J]. Curr Opin Biotechnol, 2007, 18: 200-206


国家自然科学基金项目(21206056)和江苏省自然科学基金项目(BK2012121)资助 Supported the National Natural Science Foundation of China (21206056), and the Natural Science Foundation of Jiangsu Province of China (BK2012121)
更新日期/Last Update: 2015-01-05