|本期目录/Table of Contents|

[1]周伦理,解光宁,张振葆,等.两个不同耐铝玉米自交系根系对铝毒胁迫的响应[J].应用与环境生物学报,2014,20(04):669-674.[doi:10.3724/SP.J.1145.2014.04013]
 ZHOU Lunli,XIE Guangning,ZHANG Zhenbao,et al.Responses of two maize inbred lines of different aluminium tolerance to Al-induced oxidative stress[J].Chinese Journal of Applied & Environmental Biology,2014,20(04):669-674.[doi:10.3724/SP.J.1145.2014.04013]
点击复制

两个不同耐铝玉米自交系根系对铝毒胁迫的响应()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
20卷
期数:
2014年04期
页码:
669-674
栏目:
研究论文
出版日期:
2014-08-25

文章信息/Info

Title:
Responses of two maize inbred lines of different aluminium tolerance to Al-induced oxidative stress
作者:
周伦理 解光宁 张振葆 黄凤珠 高世斌 张素芝
1四川农业大学玉米所/农业部西南玉米生物学与遗传育种重点实验室 成都 611130 2日照市五莲县农业局 日照 262300
Author(s):
ZHOU Lunli XIE Guangning ZHANG Zhenbao HUANG Fengzhu GAO Shibin ZHANG Suzhi
1Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China 2Agricultural Bureau of Wulian District, Rizhao 262300, China
关键词:
玉米铝毒非生物胁迫膜脂过氧化木质素
Keywords:
Zea mays aluminium toxicity abiotic stress lipid peroxidation lignin
分类号:
Q945.78 : S513.034
DOI:
10.3724/SP.J.1145.2014.04013
文献标志码:
A
摘要:
通过铝(Al)毒胁迫处理,检测两个不同耐Al玉米自交系(耐Al自交系178和Al敏感自交系Mo17)根系氧化胁迫相关指标如Al含量、H2O2含量、丙二醛(MDA)含量,抵御氧化胁迫的过氧化物酶(POD)活性及细胞壁木质素含量,以期为揭示Al毒抑制玉米根系发育的机制提供佐证. 结果表明,Al毒处理后,两个玉米自交系根系的Al含量、H2O2含量、MDA含量、木质素含量和POD活性均有所增加. 当Al处理24 h时,这些生理指标变化最大. 其中,178中木质素含量和POD活性增加幅度大于Mo17,分别为0.126 OD和 2.04 U;而Mo17中Al含量、H2O2含量和MDA含量增加幅度更大,分别为1.835 μg g-1、16.71 μmol g-1和40.2 nmol g?1. 综上,玉米根系的生长抑制与Al诱导的膜脂过氧化有关,而根系细胞抗氧化酶POD的活性及木质素含量的变化是玉米对Al毒胁迫的一种诱发性防御反应. 图5 参29
Abstract:
Aluminium (Al) toxicity seriously inhibits root growth and development of plants in acid soils. Root growth inhibition is the most obvious phenotype observable shortly after Al exposure. Previous reports believed Al triggered oxidative stress and further activated defense responses of plant. In China maize is seriously stressed by Al due to the rapid spread of acid soil, but the reason of root growth inhibition is still unknown. This study aimed to understand the mechanism of root growth inhibition under Al stress. We investigated the parameters relative to oxidative stress, including content of aluminium, hydrogen peroxide (H2O2), malondialdehyde (MDA), and those involved in defense responses such as oxidative stress activity of peroxidase and content of lignin. The result showed that all values, including content of Al, H2O2, MDA, content of lignin, activity of peroxidase, increased in both maize lines after Al treatment. Notably, after Al exposure for 24 h, the changes of the physiological parameters were in maximum. Meanwhile, lignin content and the activity of peroxidase were increased, up to the peak value of 0.126 OD and 2.04 U, respectively, in the Al tolerant 178, much higher than that of the Al sensitive Mo17. On the contrary, the maximum content of Al, H2O2 and MDA in Mo17 was 1.835 μg g-1, 16.71 μmol g-1, 40.2 nmol g?1, respectively, after Al treatment, much higher than that in 178. These results suggested that the inhibition of maize root growth is correlated with the Al-induced lipid peroxidation, and that the changes of lignin content and activity of peroxidase may be a defense response caused by Al toxicity in maize.

参考文献/References:

1 Kochian LV. Cellular mechanisms of aluminum toxicity and resistance in plants [J]. Annu Rev Plant Biol, 1995, 46: 237-260
2 Ma JF, Ryan PR. Understanding how plants cope with acid soils [J]. Funct Plant Biol, 2010, 37: iii-vi
3 Ahn SJ, Matsumoto H. The role of the plasma membrane in the response of plant roots to aluminum toxicity [J]. Plant Signal Behav, 2006, 1: 37-45
4 Exley C. The pro-oxidant activity of aluminum [J]. Free Radical Biol Med, 2004, 36: 380-387
5 Hossain MA, Hossain AKMZ, Kihara T, Koyama H, Hara T. Aluminum-induced lipid peroxidation and lignin deposition are associated with an increase in H2O2 generation in wheat seedlings [J]. Soil Sci Plant Nutr, 2005, 51: 223-230
6 Guo TR, Zhang GP, Zhou MX, Wu FB, Chen JX. Effects of aluminum and cadmium toxicity on growth and antioxidant enzyme activities of two barley genotypes with different Al resistance [J]. Plant Soil, 2004, 258: 241-248
7 Ma BH, Gao L, Zhang HX, Cui J, Shen ZG. Aluminum-induced oxidative stress and changes in antioxidant defenses in the roots of rice varieties differing in Al tolerance [J]. Plant Cell Rep, 2012, 31: 687-696
8 Xue YJ, Tao L, Yang ZM. Aluminum-induced cell wall peroxidase activity and lignin synthesis are differentially regulated by jasmonate and nitric oxide [J]. J Agric Food Chem, 2008, 56: 9676-9684
9 Kobayashi Y, Yamamoto Y, Matsumoto H. Studies on the mechanism of aluminum tolerance in pea (Pisum sativum L.) using aluminum-tolerant cultivar ‘Alaska’ and aluminum-sensitive cultivar ‘Hyogo’ [J]. Soil Sci Plant Nutr, 2004, 50: 197-204
10 Cakmak I, Horst WJ. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max) [J]. Physiol Plant, 1991, 83: 463-468
11 章爱群, 贺立源, 赵会娥, 杨建峰, 吴照辉, 李淑艳. 磷铝协同作用对玉米苗期生物学性状和营养学特性的影响[J]. 应用与环境生物学报, 2009, 15 (1): 48-52 [Zhang AQ, He LY, Zhao HE, Yang JF, Wu ZH, Li SY. Effects of phosphorus deficiency and Al toxicity on biological and nutrient characteristics of maize seedlings [J]. Chin J Appl Environ Biol, 2009, 15 (1): 48-52]
12 Ezaki B, Gardner RC, Ezaki Y, Matsumoto, H. Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress [J]. Plant Physiol, 2000, 122: 657-666
13 Lin CC, Kao CH. NaCl induced changes in ionically bound peroxidase activity in roots of rice seedlings [J]. Plant Soil, 1999, 216: 147-153
14 Richards KD, Schott EJ, Sharma YK, Davis KR, Gardner RC. Aluminum induces oxidative stress genes in Arabidopsis thaliana [J]. Plant Physiol, 1998, 116: 409-418
15 Matsumoto H, Motoda H. Aluminum toxicity recovery processes in root apices. Possible association with oxidative stress [J]. Plant Sci, 2012, 185: 1-8
16 Boscolo PR, Menossi M, Jorge RA. Aluminum-induced oxidative stress in maize [J]. Phytochemistry, 2003, 62: 181-189
17 Giannakoula A, Moustakas M, Mylona P, Papadakis I, Yupsanis T. Aluminum tolerance in maize is correlated with increased levels of mineral nutrients, carbohydrates and proline, and decreased levels of lipid peroxidation and Al accumulation [J]. J Plant Physiol, 2008, 165: 385-396
18 Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H. Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells [J]. Plant Physiol, 2002, 128: 63-72
19 Pi?eros MA, Kochian LV. A patch-clamp study on the physiology of aluminum toxicity and aluminum tolerance in maize. Identification and characterization of Al3+-induced anion channels [J]. Plant Physiol, 2001, 125: 292-305
20 Loreto F, Velikova V. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes [J]. Plant Physiol, 2001, 127: 1781-1787
21 Jana S, Choudhuri MA. Glycolate metabolism of three submersed aquatic angiosperms during ageing [J]. Aqua Bot, 1982, 12: 345-354
22 Syros T, Yupsanis T, Zafiriadis H, Economou A. Activity and isoforms of peroxidases, lignin and anatomy, during adventitious rooting in cuttings of in cuttings of Ebenus cretica L. [J]. J Plant Physiol, 2004, 161: 69-77
23 Hammerschmidt R, Nuckles E, Ku? J. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium [J]. Physiol Plant Path, 1982, 20: 73-82
24 Collins NC, Shirley NJ, Saeed M, Pallotta M, Gustafson JP. An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.) [J]. Genetics, 2008, 179: 669-682
25 Pi?eros MA, Shaff JE, Manslank HS, Alves VMC, Kochian LV. Aluminum resistance in maize cannot be solely explained by root organic acid exudation. A comparative physiological study [J]. Plant Physiol, 2005, 137: 231-241
26 Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction [J]. Annu Rev Plant Biol, 2004, 55: 373-399
27 李刚, 徐芳杰, 张奇春, 章永松, 林咸永. 铝胁迫对不同耐铝性小麦基因型根尖抗氧化酶活性的影响[J]. 浙江大学学报(农业与生命科学版), 2009, 35 (6): 619-625 [Li G, Xu FJ, Zhang QC, Zhang YS, Lin XY. Effects of aluminum stress on antioxidant enzyme activity in root tips of wheat genotypes differing in aluminum tolerance [J]. J Zhejiang Univ (Agric Life Sci), 2009, 35 (6): 619-625]
28 Dunand C, Crèvecoeur M, Penel C. Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases [J]. New Phytol, 2007, 174: 332-341
29 Maron LG, Pi?eros MA, Guimar?es CT, Magalhaes JV, Pleiman JK, Mao C, Shaff J, Belicuas SNJ, Kochian LV. Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize [J]. Plant J, 2010, 61: 728-740

相似文献/References:

[1]耿瑞双,缪树华,何立明.抗赖氨酸加苏氨酸的玉米种子蛋白突变体[J].应用与环境生物学报,1995,1(01):1.
 Geng Ruishuang,Miao Shuhua,He Liming.MAIZE SEED PROTEIN MUTANTS RESISTANT TO LYSINE PLUS THREONINE[J].Chinese Journal of Applied & Environmental Biology,1995,1(04):1.
[2]宋松泉,简伟军,傅家瑞.Cd2+对玉米种子活力的影响及Ca2+的拮抗作用[J].应用与环境生物学报,1997,3(01):1.
 Song Songquan,Jian Weijun,Fu Jiarui.EFFECT OF Cd2+ ON SEED VIGOR OF ZEA MAYS L. AND ANTAGONISM OF Ca2+ TO Cd2+[J].Chinese Journal of Applied & Environmental Biology,1997,3(04):1.
[3]章爱群,贺立源,赵会娥,等.磷铝协同作用对玉米苗期生物学性状和营养学特性的影响[J].应用与环境生物学报,2009,15(01):48.[doi:10.3724/SP.J.1145.2009.00048]
 ZHANG Aiqun,HE Liyuan,ZHAO Huie,et al.Effects of Phosphorus Deficiency and Al toxicity on Biological and Nutrient Characteristics of Maize Seedlings[J].Chinese Journal of Applied & Environmental Biology,2009,15(04):48.[doi:10.3724/SP.J.1145.2009.00048]
[4]王琦琳,牛向丽,刘永胜.玉米两个功能未知转录因子基因的转录后加工[J].应用与环境生物学报,2009,15(04):483.[doi:10.3724/SP.J.1145.2009.00483]
 WANG Qilin,NIU Xiangli,LIU Yongsheng.Post-transcriptional Processing of Two Functions of Unknown Transcription Factor Genes in Zea mays[J].Chinese Journal of Applied & Environmental Biology,2009,15(04):483.[doi:10.3724/SP.J.1145.2009.00483]
[5]张艺伟,狄晓艳,武冬梅,等.山西工矿区土壤SO2-PAHs复合污染对玉米种子萌发和幼苗生长的影响[J].应用与环境生物学报,2013,19(01):134.[doi:10.3724/SP.J.1145.2013.00134]
 ZHANG Yiwei,DI Xiaoyan,WU Dongmei,et al.Effects of Combined Pollution of SO2 and PAHs on Seed Germination and Growth of Maize in Shanxi Industrial and Mining Area[J].Chinese Journal of Applied & Environmental Biology,2013,19(04):134.[doi:10.3724/SP.J.1145.2013.00134]
[6]杨珊珊,王茜,胡红玲,等.银木凋落叶分解对玉米生长的影响及施肥的缓解作用[J].应用与环境生物学报,2015,21(04):770.[doi:10.3724/SP.J.1145.2015.04033]
 YANG Shanshan,WANG Qian,HU Hongling,et al.Allelopathy of Cinnamomum septentrionale leaf litter on maize growth and relieving effect of fertilization[J].Chinese Journal of Applied & Environmental Biology,2015,21(04):770.[doi:10.3724/SP.J.1145.2015.04033]
[7]廖玉华,胡红玲,陈玉凤,等.五倍子废渣在土壤中分解对玉米生长和结实的影响[J].应用与环境生物学报,2017,23(04):635.[doi:10.3724/SP.J.1145.2016.09028]
 LIAO Yuhua,HU Hongling**,CHEN Yufeng,et al.Heterologous overexpression of Populus euphratica CPD improved tobacco resistance to salt, high nitrogen, and drought stress[J].Chinese Journal of Applied & Environmental Biology,2017,23(04):635.[doi:10.3724/SP.J.1145.2016.09028]
[8]李善家,王军强,施志国,等.不同基肥处理对玉米土壤酶活性和球囊霉素相关土壤蛋白的影响[J].应用与环境生物学报,2017,23(2):357.[doi:10.3724/SP.J.1145.2016.04045]
 LI Shanjia,WANG Junqiang,et al.Effect of different base fertilizer treatments on maize soil enzyme activity and glomalin-related protein[J].Chinese Journal of Applied & Environmental Biology,2017,23(04):357.[doi:10.3724/SP.J.1145.2016.04045]
[9]袁先福,孙玉菡,朱成之,等.轮作联用生物有机肥促进香蕉生长[J].应用与环境生物学报,2018,24(01):60.[doi:10.19675/j.cnki.1006-687x.2017.03022]
 YUAN Xianfu,SUN Yuhan,ZHU Chengzhi,et al.Rotation combined with bio-organic fertilizer application to promote banana growth[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):60.[doi:10.19675/j.cnki.1006-687x.2017.03022]
[10]杨珊珊,王茜,胡庭兴,等.3种农作物(玉米、黄瓜、豇豆)对银木凋落叶化感作用的生理响应[J].应用与环境生物学报,2018,24(02):292.[doi:10.19675/j.cnki.1006-687x.2017.05016]
 YANG Shanshan,WANG Qian,HU Tingxing,et al.Physiological responses to allelopathy of decomposing Cinnamomum septentrionale leaf litter of three crops (corn, cucumber, and cowpea)[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):292.[doi:10.19675/j.cnki.1006-687x.2017.05016]

备注/Memo

备注/Memo:
国家重点基础研究发展计划项目(2014CB138705)、国家自然科学基金项目(30800687,31071434)、教育部博士点基金项目(1.2012-5103110011)、教育部回国留学人员启动基金及四川省科技厅学术和技术带头人培养基金资助 Supported by the State Key Basic R & D Program of China (2014CB138705), the National Natural Science Foundation of China (30800687 and 31071434), the Ph.D. Program Foundation of Ministry of Education of China (1.20125103110011), the Scientific Research Foundation for the Returned Overseas Chinese Scholars of the State Education Ministry, and the Sichuan Provincial Department of Science and Technology Fund for Cultivation of Leaders of Academics and Technology
更新日期/Last Update: 2014-08-26