|本期目录/Table of Contents|

 XU Mengyu,LIU Yanjie,LIN Hui,et al. Asymmetric reduction of C=C bond catalyzed with Pseudomonas species[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):798-803.[doi:10.3724/SP.J.1145.2014.03034]





 Asymmetric reduction of C=C bond catalyzed with Pseudomonas species
 1中国科学院环境与应用微生物重点实验室,中国科学院成都生物研究所 成都 610041
2四川省环境微生物重点实验室,中国科学院成都生物研究所 成都 610041
3中国科学院大学 北京 100049
4河南工业大学生物工程学院 郑州 450001
 XU Mengyu LIU Yanjie LIN Hui ZHANG Shuaibing WU Zhongliu
 1Key Laboratory of Environmental and Applied Microbiology of Chinese Academy of Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
2Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
3University of Chinese Academy of Sciences, Beijing 100049, China
4College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
 old yellow enzyme enoate reductase asymmetric reduction biocatalysis Pseudomonas sp.
Q939.9 : Q814
烯醇还原酶能够催化活性烯烃的不对称还原,得到具有一个或两个手性中心的烷烃化合物. 为了挖掘含有烯醇还原酶的微生物资源,本研究利用柠檬醛与(Z)-乙基-3-硝基-2-苯基丙烯酸酯对土壤中的细菌进行富集筛选与鉴定,得到7株具有碳碳双键还原活力的假单胞菌. 利用全细胞生物转化体系,分别研究这7株菌株对8种不同底物的转化活力,结果显示上述菌株表现出不同的底物偏好性、对映选择性以及结构选择性. 例如菌株7-B-2能够以99%的转化率和e.e.值将底物(Z)-乙基-3-硝基-2-苯基丙烯酸酯转化为(S)-乙基-3-硝基-2-苯基丙酸酯;菌株9-A-1能够以75%的转化率和99%的e.e.值将底物(Z)-3-苯基-3-氰基-丙烯酸转化为(R)-3-苯基-3-氰基-丙酸. 研究结果表明这7个菌株在重要手性中间体的生物合成中具有一定研究与应用价值. 图6 表6 参35
Asymmetric reduction of activated alkenes to the corresponding enantiopure alkanes by enoate reductases (ERs) can lead to one or two chiral centers. In the present work, citral and (Z)-ethyl 3-nitro-2-phenylacrylate were used to enrich and screen microbes producing ERs from soil. Seven microbial strains were obtained and identified as Pseudomonas sp., which displayed varied substrate preference and enantio-selectivity toward eight activated alkenes or alkynes. Strain 7-B-2 could transform (Z)-ethyl 3-nitro-2-phenylacrylate to (S)-ethyl 3-nitro-2-phenylpropanoate with a conversion and e.e. value of 99%; strain 9-A-1 could transform (Z)-3-cyano-3-phenylacrylic acid to (R)-3-cyano-3-phenylpropanoic acid with a conversion of 75% and e.e. value of 99%. The results demonstrated that the strains from the genus of Pseudomonas are important to bioreductive synthesis of some important chiral intermediates.



1 Liu Y, Tang TX, Pei XQ, Zhang C, Wu ZL. Identification of ketone reductase ChKRED20 from the genome of Chryseobacterium sp. CA49 for highly efficient anti-Prelog reduction of 3, 5-bis (trifluoromethyl) acetophenone [J]. J Mol Catal B: Enzym, 2014, 102: 1-8

<br/>2 Clouthier C, Pelletier J. Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis [J]. Chem Soc Rev, 2012, 41: 1585-1605

<br/>3 Hollmann F, Arendsa IWCE, Holtmannb D. Enzymatic reductions for the chemist [J]. Green Chem, 2011, 13: 2285-2314

<br/>4 Crocq V, Masson C, Winter J, Richard C, Lemaitre G, Lenay J, Vivat M, Buendia J, Prat D. Synthesis of Trimegestone: the first industrial application of Bakers’ yeast mediated reduction of a ketone [J]. Org Process Res Dev, 1997, 1: 2-13

<br/>5 Gooding OW, Voladri R, Bautista A, Hopkins T, Huisman G, Jenne S, Ma S, Mundorff EC, Savile MM, Truesdell SJ, Wong J. Development of a practical biocatalytic process for (R)-2-methylpentanol [J]. Org Process Res Dev, 2009, 14: 119-126

<br/>6 Liu YJ, Pei XQ, Lin H, Gai P, Liu YC, Wu ZL. Asymmetric bioreduction of activated alkenes by a novel isolate of Achromobacter species producing enoate reductase [J]. Appl Microbiol Biotechnol, 2012, 95: 635-645

<br/>7 Wang HB, Pei XQ, Wu ZL. An enoate reductase Achr-OYE4 from Achromobacter sp. JA81: characterization and application in asymmetric bioreduction of C=C bonds. Appl Microbiol Biotechnol, 2014, 98: 705-715

<br/>8 Warburg O, Christian W. On a new oxidation enzyme [J]. Naturwissenschaften, 1932, 20: 980-981

<br/>9 Warburg O, Christian W. Yellow enzyme and its effects [J]. Biochem Zeits, 1933, 266: 377-411

<br/>10 Theorell H. Preparation in pure state of the effect group of yellow enzymes [J]. Biochem Zeits, 1935, 275: 344-346

<br/>11 Theorell H, Åkeson Å. Molecular weight and FMN content of crystalline “Old Yellow Enzyme” [J]. Arch Biochem Biophys, 1956, 65: 439-448

<br/>12 Toogood H, Gardiner J, Scrutton N. Biocatalytic reductions and chemical versatility of the Old Yellow Enzyme family of flavoprotein oxidoreductases [J]. ChemCatChem, 2010, 2: 892-914

<br/>13 Saito K, Thiele DJ, Davio M, Lockridge O, Massey V. The cloning and expression of a gene encoding Old Yellow Enzyme from Saccharomyces carlsbergensis [J]. J Biol Chem, 1991, 266: 20720-20724

<br/>14 Stott K, Saitoj K, Thiele D, Masseyl V. Old Yellow Enzyme: the discovery of multiple isozymes and a family of related proteins [J]. J Biol Chem, 1993, 268: 6097-6106

<br/>15 Niino Y. A New Old Yellow Enzyme of Saccharomyces cerevisiae [J]. J Biol Chem, 1995, 270: 1983-1991

<br/>16 Fitzpatrick T, Amrhein N, Macheroux P. Characterization of YqjM, an Old Yellow Enzyme homolog from Bacillus subtilis involved in the oxidative stress response [J]. J Biol Chem 2003, 278: 19891-19897

<br/>17 Griese J, Jakob R, Schwarzinger S, Dobbek H. Xenobiotic reductase A in the degradation of quinoline by Pseudomonas putida 86: physiological function, structure and mechanism of 8-hydroxycoumarin reduction [J]. J Mol Biol, 2006, 361: 140-152

<br/>18 Blehert D, Fox B, Chambliss G. Cloning and sequence analysis of two Pseudomonas flavoprotein xenobiotic reductases [J]. J Bacteriol, 1999, 181: 6254-6263

<br/>19 Brige A, Hemel DVd, Carpentier W, Smet LD, Beeumen JV. Comparative characterization and expression analysis of the four Old Yellow Enzyme homologues from Shewanella oneidensis indicate differences in physiological function [J]. Biochem J, 2006, 394: 335-344

<br/>20 Mizugaki M, Unuma T, Shiraishi T, Nishimaki T, Yamanaka H. Studies on the metabolism of unsaturated fatty-acids .1) N-Ethylmaleimide reducing activity in Escherichia coli K-12 [J]. Chem Pharm Bull, 1981, 29: 570-573

<br/>21 Müller A, Hauer Ba, Rosche B. Asymmetric alkene reduction by yeast Old Yellow Enzymes and by a novel Zymomonas mobilis reductase [J]. Biotechnol Bioeng, 2007, 98: 22-29

<br/>22 Vaz A, Chakraborty S, Massey V. Old Yellow Enzyme - aromatization of cyclic enones and the mechanism of a novel dismutation reaction [J]. Biochemistry, 1995, 34: 4246-4256

<br/>23 Sambrook J, Russell David W. Molecular cloning: a laboratory manual [M]. New York: Cold spring harbor laboratory press; 1989

<br/>24 Müller A, Hauer B, Rosche B. Enzymatic reduction of the α, β-unsaturated carbon bond in citral [J]. J Mol Catal B: Enzym, 2006, 38: 126-130

<br/>25 Swiderska MA,Stewart JD. Asymmetric bioreductions of beta-nitro acrylates as a route to chiral beta(2)-amino acids [J]. Org Lett, 2006, 8: 6131-6133

<br/>26 Müller A, Stürmer R, Hauer B, Rosche B. Stereospecific alkyne reduction: novel activity of old yellow enzymes [J]. Angew Chem Int Ed, 2007, 46: 3316-3318

<br/>27 Fryszkowska A, Fisher K, Gardiner J, Stephens G. Highly enantioselective reduction of β,β-disubstituted aromatic nitroalkenes catalyzed by Clostridium sporogenes [J]. J Org Chem, 2008, 73: 4295-4298

<br/>28 Neises B, Steglich W. Simple method for the esterification of carboxylic acids [J]. Angew Chem Int Ed, 1978, 17: 522-524

<br/>29 Nunami K-i, Suzuki M, Yoneda N. Synthesis of β,γ-unsaturated α-amino-acids [J]. J Chem Soc, Perkin Trans 1, 1979: 2224-2229

<br/>30 Kawai Y, Inaba Y, Tokitoh N. Asymmetric reduction of nitroalkenes with baker’s yeast [J]. Tetrahedron: Asymmetry, 2001, 12: 309-318

<br/>31 Swiderska M, Stewart J. Asymmetric bioreductions of beta-nitro acrylates as a route to chiral beta(2)-amino acids [J]. Org Lett, 2006, 8: 6131-6133

<br/>32 Fryszkowska A, Fisher K, Gardiner J, Stephens G. A short, chemoenzymatic route to chiral β-aryl-γ-amino acids using reductases from anaerobic bacteria [J]. Org Biomol Chem, 2010, 8: 533-535

<br/>33 Enders D, Niemeier O. Asymmetric synthesis of β-substituted γ-lactams employing the samp-/ramp-hydrazone methodology. Application to the synthesis of (R)-(-)-baclofen [J]. Heterocycles 2005, 66: 385-403

<br/>34 Belda O, Lundgren S, Moberg C. Recoverable resin-supported pyridylamide ligand for microwave-accelerated molybdenum-catalyzed asymmetric allylic alkylations: enantioselective synthesis of baclofen [J]. Org Lett, 2003, 5: 2275-2278

<br/>35 Shimoda K, Kubota N, Hamada H. Asymmetric reduction of α,β-unsaturated carbonyl compounds with reductases from Nicotiana tabacum [J]. Tetrahedron: Asymmetry, 2004, 15: 2443-2446


 WU Jinxin,ZONG Hong,LU Xinyao,et al. Characterization of a strain catalyzing biosynthesis of 3-hydroxypropionic acid[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):804.[doi:10.3724/SP.J.1145.2014.03003]
[2]刘艳,徐岳松,吴茜,等. 雨生红球藻培养和产油脂工艺的优化[J].应用与环境生物学报,2014,20(05):809.[doi:10.3724/SP.J.1145.2014.01036]
 LIU Yan,XU Yuesong,WU Qian,et al. Optimization of Haematococcus pluvialis culture and lipid production process[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):809.[doi:10.3724/SP.J.1145.2014.01036]
[3]杨云喜,李佩,徐岳松,等. 产抗菌肽乳酸菌的分离、鉴定及培养条件优化[J].应用与环境生物学报,2014,20(05):817.[doi:10.3724/SP.J.1145.2013.12044]
 YANG Yunxi,LI Pei,XU Yuesong,et al. Isolation and identification of antimicrobial peptides-producing lactic acid bacteria and optimization of the culture conditions[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):817.[doi:10.3724/SP.J.1145.2013.12044]
 CHENG Caiying,LIU Xiaofeng,YUAN Yuexiang,et al. Bacterial community structure in distiller’s yeast and accumulated fermented grains of Maotai-flavor liquor[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):825.[doi:10.3724/SP.J.1145.2014.03035]
[5]郭亚萍,张国庆,陈青君,等. 双孢蘑菇堆肥过程中细菌群落结构分析[J].应用与环境生物学报,2014,20(05):832.[doi:10.3724/SP.J.1145.2014.03020]
 GUO Yaping,ZHANG Guoqing,CHEN Qingjun,et al. Bacterial community structure analysis for mushroom (Agaricus bisporus) compost using PCR-DGGE technique[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):832.[doi:10.3724/SP.J.1145.2014.03020]
[6]毕京芳,黄钧,关梦龙,等. 微生物菌剂发酵中草药渣生产有机肥[J].应用与环境生物学报,2014,20(05):840.[doi:10.3724/SP.J.1145.2014.03051]
 BI Jingfang,HUANG Jun,GUAN Menglong,et al. Composting Chinese herbal residues with inoculum of microbial agents to produce organic fertilizer[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):840.[doi:10.3724/SP.J.1145.2014.03051]
[7]贺文君,李甫,杨春艳,等. 川滇蔷薇果实中的三萜类化学成分[J].应用与环境生物学报,2014,20(05):846.[doi:10.3724/SP.J.1145.2014.02022]
 HE Wenjun,LI Fu,YANG Chunyan,et al. Studies on the triterpenoids from Rosa soulieana fruit[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):846.[doi:10.3724/SP.J.1145.2014.02022]
 LI Hu,LIAO Dan,SU Jianqiang,et al. Diversity and function of endophytic bacteria in roots of exotic plant Spartina alterniflora[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):856.[doi:10.3724/SP.J.1145.2014.03027]
[9]徐佳奕,刘守海,徐兆礼,等. 三沙湾浮游动物群落对水团季节变化的响应[J].应用与环境生物学报,2014,20(05):869.[doi:10.3724/SP.J.1145.2014.01038]
 XU Jiayi,LIU Shouhai,XU Zhaoli,et al.Responses of zooplankton community to changes in water masses in the Sansha Bay[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):869.[doi:10.3724/SP.J.1145.2014.01038]
[10]原秀云,刘金龙,曾晓茂,等. 3种麻蜥MHC I类基因外显子3和外显子4序列特征[J].应用与环境生物学报,2014,20(05):877.[doi:10.3724/SP.J.1145.2014.02003]
 YUAN Xiuyun,LIU Jinlong,ZENG Xiaomao,et al. Characterization of major histocompatibility complex (MHC) class I loci exon 3 and exon 4 in three racerunner species (Squamata: Lacertidae: Eremias)[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):877.[doi:10.3724/SP.J.1145.2014.02003]


 国家自然科学基金项目(21072183,21372216)资助 Supported by the National Natural Science Foundation of China ( 21072183 & 21372216)
更新日期/Last Update: 2014-10-30