|本期目录/Table of Contents|

[1]刘柯,李大平,王娟.尿液微生物燃料电池研究[J].应用与环境生物学报,2015,21(01):36-40.[doi:10.3724/SP.J.1145.2014.03030]
 LIU Ke,LI Daping,WANG Juan.Study on urine microbial fuel cell[J].Chinese Journal of Applied & Environmental Biology,2015,21(01):36-40.[doi:10.3724/SP.J.1145.2014.03030]
点击复制

尿液微生物燃料电池研究()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
21卷
期数:
2015年01期
页码:
36-40
栏目:
研究论文
出版日期:
2015-02-25

文章信息/Info

Title:
Study on urine microbial fuel cell
作者:
刘柯 李大平 王娟
1中国科学院成都生物研究所,中国科学院环境与应用微生物重点实验室 成都 610041 2中国科学院成都生物研究所,环境微生物四川省重点实验室 成都 610064 3中国科学院大学 北京 100049 4四川大学生命科学学院 成都 610064
Author(s):
LIU Ke LI Daping WANG Juan
1Key Laboratory of Environmental and Applied Microbiology of Chinese Academy of Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 3University of Chinese Academy of Sciences, Beijing 100049, China 4School of Life Sciences, Sichuan University, Chengdu 610041, China
关键词:
微生物燃料电池源分离尿液生物能源脱氮Arcobacter
Keywords:
microbial fuel cell urine source separation bioenergy denitrification Arcobacter
分类号:
TM911.45
DOI:
10.3724/SP.J.1145.2014.03030
文献标志码:
A
摘要:
尿液是市政污水中氮、磷与COD的主要来源,将尿液从污水系统中分离单独处理可以缓解城市污水处理厂有机物、营养素的超负荷难题. 以源分离的尿液为底物,研究微生物燃料电池的产电特征及其污染物去除效果,并进一步考察影响系统产电性能的因素. 结果显示:在超过6个月的试验过程中,伴随有机物和总氮的减少,系统可保持长期稳定的功率输出. COD和总氮的最高去除率为92.9%和65.6%,系统最大输出功率为388.2 mW/m2,这也是迄今尿液微生物燃料电池所获得的最高功率. 阳极碳毡表面菌群分析显示具有电化学活性的Arcobacter和具有发酵功能的Bacteroides为优势菌群. 氨氮积累、微生物淤积以及尿液中的物质沉淀等是影响尿液微生物燃料电池性能的主要因素. 研究结果表明,尿液微生物燃料电池高效地实现了在污染物去除的同时获得高输出功率,体系中Arcobacter是一种新型的胞外产电菌,其强电化学作用可利用在生物电能的获得过程中.
Abstract:
Human urine is the main source of nitrogen, phosphorus and COD in the municipal sewage. Separate treatment of urine from sewage system would alleviate the overload of organic matter and nutrients in urban wastewater treatment plants. This paper aims to study the characteristics of electricity production of urine microbial fuel cells and the removal efficiency of pollutants. The factors that affect system performance were also investigated. Electrochemical analysis, pollutant (COD, TN, and NH4+-N) concentration determination and high-throughput sequencing were used in the study. In more than six months, constant power generation from urine was obtained along with the decrease of organic matter and total nitrogen. The best removal efficiency of COD and TN was 92.9% and 65.6% respectively, and the maximum output power was 388.2 mW/m2, the highest power so far generated with urine microbial fuel cells. Microbial community analysis showed the fermentative Bacteroides and exoelectrogenic Arcobacter were the dominant bacteria attaching on the anode carbon felt. The accumulation of ammonia nitrogen, biofouling and precipitation were the main factors influencing the performance of urine microbial fuel cells. These results showed that human urine can power microbial fuel cells to remove pollutants and generate electricity simultaneously. The new extracellular electrogenesis bacterium Arcobacter can be used in the process of biological energy acquisition for its high electrochemical activity.

参考文献/References:

Larsen TA, Gujer W. Separate management of anthropogenic nutrient solutions (human urine) [J]. Water Sci Technol, 1996, 34 (3-4): 87-94
PRauch W, Brockmann D, Peter I, Larsen TA, Gujer W. Combining urine separation with waste design: an analysis using a stochastic model for urine production [J]. Water Res, 2003, 37: 681-689
Wilsenach J, van Loosdrecht M. Impact of separate urine collection on wastewater treatment systems [J]. Water SciTechnol, 2003, 48 (1): 103-110
Wilsenach J, van Loosdrecht M. Effects of separate urine collection on advanced nutrient removal processes [J]. Environ SciTechnol, 2004, 38 (4): 1208-1215
Kvarnstr?m E, Emilsson K, Stintzing AR, Johansson M, J?nsson H, afPetersens E, Sch?nning C, Christensen J, Hellstr?m D, Qvarnstr?m L, Ridderstolpe P, Drangert JO. Urine diversion: one step towards sustainable sanitation [OL]. 2006, www.ecosanres.org
郝晓地, 衣兰凯, 仇付国. 源分离技术的国内外研发进展及应用现状[J]. 中国给水排水, 2010, 26 (12): 1-7
Larsen TA, Alder AC, Eggen RIL, Maurer M, Lienert J. Source separation: will we see a paradigm shift in wastewater handling [J]. Environ Sci Technol, 2009, 43 (16): 6121-6125
Maurer M, Pronk W, Larsen TA. Review: treatment processes for source-separated urine [J]. Water Res, 2006, 40: 3151-3166
Liu H, Ramnarayanan R, Logan BE. Production of electricity during wastewater treatment using a single chamber microbial fuel cell [J]. Environ Sci Technol, 2004, 38: 2281-2285
Ieropoulos IA, Greenman J, Melhuish C. Miniature microbial fuel cells and stacks for urine utilization [J]. Int J Hydrogen Energy, 2013, 38 (1): 492-496
Ieropoulos IA, Ledezma P, Stinchcombe A, Papaharalabos G, Melhuish C, Greenman J. Waste to Real Energy: the first MFC powered mobile phone [J]. Phys Chem Chem Phys, 2013, 15: 15312-15316
Ieropoulos I, Greenman J, Melhuish C. Urine utilization by microbial fuel cells; energy fuel for the future [J]. Phys Chem Chem Phys, 2012, 14: 94-98
Kuntke P, Smiech KM, Bruning H, Zeeman G, Saakes M, Sleutels THJA, Hamelers HVM, Buisman CJN. Ammonium recovery and energy production from urine by a microbial fuel cell [J]. Water Res, 2012, 46 (8): 2627-2636
国家环境保护总局水和废水监测分析方法编委会. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002
Fedorovich V, Knighton MC, Pagaling E, Ward FB, Free A, Goryanin I. Novel electrochemically active bacterium phylogenetically related to Arcobacterbutzleri, isolated from a microbial fuel cell [J]. Appl Environ Microbiol, 2009, 75 (23): 7326-7334
Ieropoulos I, Greenman J, Melhuish C. Urine utilization by microbial fuel cells; energy fuel for the future [J]. PhysChemChemPhys, 2012, 14: 94-98
Zang GL, Sheng GP, Li WW, Tong ZH, Zeng RJ, Shi C, Yu HQ. Nutrient removal and energy production in a urine treatment process using magnesium ammonium phosphate precipitation and a microbial fuel cell technique [J]. Phys Chem Chem Phys, 2012, 14: 1978-1984
He Z, Kan JJ, Wang YB, Huang YL, Mansfeld F, Nealson KH. Electricity production coupled to ammonium in a microbial fuel cell [J]. Environ Sci Technol, 2009, 43 (9): 3391-3397
宋天顺, 吴夏芫, 肖鹏, 韩硕, 周楚新. 不同接种物对微生物燃料电池利用氨氮产电的影响[J]. 可再生能源, 2012, 30 (11): 110-113
Wilsenach JA, van Loosdrecht M. Integration of processes to treat wastewater and source-separated urine [J]. J Environ Eng, 2006, 132 (3): 331-341

相似文献/References:

[1]李登兰,洪义国,许玫英,等.微生物燃料电池构造研究进展[J].应用与环境生物学报,2008,14(01):147.
 LI Denglan,et al..Progress in Construction of Microbial Fuel Cell[J].Chinese Journal of Applied & Environmental Biology,2008,14(01):147.
[2]张雅舒,张礼霞,李大平.微生物燃料电池还原二氧化铅及产电研究[J].应用与环境生物学报,2012,18(05):780.[doi:10.3724/SP.J.1145.2012.00780]
 ZHANG Yashu,ZHANG Lixia,LI Daping.Simultaneous Reduction of Lead Dioxide and Improvement of Bioelectricity Production in Microbial Fuel Cell[J].Chinese Journal of Applied & Environmental Biology,2012,18(01):780.[doi:10.3724/SP.J.1145.2012.00780]
[3]崔旸,苏文涛,高平,等.还原性硫化物微生物燃料电池偶联偶氮染料降解[J].应用与环境生物学报,2012,18(06):978.[doi:10.3724/SP.J.1145.2012.00978]
 CUI Yang,SU Wentao,GAO Ping,et al.Microbial Fuel Cell Coupled Bio-oxidation of Reducing Sulfide with Degradation of Azo Dyes[J].Chinese Journal of Applied & Environmental Biology,2012,18(01):978.[doi:10.3724/SP.J.1145.2012.00978]
[4]郭静,徐自祥,付亚星,等.产电微生物基因组及代谢网络分析[J].应用与环境生物学报,2012,18(06):1075.[doi:10.3724/SP.J.1145.2012.01075]
 GUO Jing,XU Zixiang,FU Yaxing,et al.Analysis on Electricigen Genomes and Metabolic Networks[J].Chinese Journal of Applied & Environmental Biology,2012,18(01):1075.[doi:10.3724/SP.J.1145.2012.01075]
[5]华涛,李胜男,周启星,等.生物电化学系统3种典型构型及其应用研究进展[J].应用与环境生物学报,2018,24(03):663.[doi:10.19675/j.cnki.1006-687x.2017.08046]
 HUA Tao,LI Shengnan,ZHOU Qixing,et al.Recent advances in three typical configurations and applications of bioelectrochemical systems[J].Chinese Journal of Applied & Environmental Biology,2018,24(01):663.[doi:10.19675/j.cnki.1006-687x.2017.08046]
[6]蒋沁芮,李泽华,杨暖,等.三维电极微生物燃料电池处理生活污水同步产电性能[J].应用与环境生物学报,2018,24(04):873.[doi:10.19675/j.cnki.1006-687x.2017.11011]
 JIANG Qinrui,LI Zehua,et al.Microbial fuel cell with three-dimensional electrodes for domestic wastewater treatment and electricity generation[J].Chinese Journal of Applied & Environmental Biology,2018,24(01):873.[doi:10.19675/j.cnki.1006-687x.2017.11011]
[7]倪宏宇航 弓雨欣 李祥锴**.微生物燃料电池阳极电极的新型材料与修饰方法*[J].应用与环境生物学报,2019,25(04):1.[doi:10.19675/j.cnki.1006-687x.2018.12022]
 NI Hongyuhang,Gong Yuxin & LI Xiangkai**.Applications of Recent Modification Methods and Materials in Microbial Fuel Cell Anode E lectrodes*[J].Chinese Journal of Applied & Environmental Biology,2019,25(01):1.[doi:10.19675/j.cnki.1006-687x.2018.12022]

备注/Memo

备注/Memo:
国家自然科学基金项目(31270166)资助 Supported by the National Natural Science Foundation of China (31270166)
更新日期/Last Update: 2015-02-15