|本期目录/Table of Contents|

[1]吴金鑫,宗红,陆信曜,等.高效催化合成3-羟基丙酸的菌株特性[J].应用与环境生物学报,2014,20(05):804-808.[doi:10.3724/SP.J.1145.2014.03003]
 WU Jinxin,ZONG Hong,LU Xinyao,et al. Characterization of a strain catalyzing biosynthesis of 3-hydroxypropionic acid[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):804-808.[doi:10.3724/SP.J.1145.2014.03003]
点击复制

高效催化合成3-羟基丙酸的菌株特性()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
20卷
期数:
2014年05期
页码:
804-808
栏目:
研究论文
出版日期:
2014-10-25

文章信息/Info

Title:
 Characterization of a strain catalyzing biosynthesis of 3-hydroxypropionic acid
作者:
 吴金鑫 宗红 陆信曜 诸葛斌 方慧英 宋健
 1江南大学工业生物技术教育部重点实验室 无锡 214122
2江南大学生物工程学院工业微生物研究中心 无锡 214122
3江南大学化学与材料工程学院 无锡 214122
Author(s):
 WU Jinxin ZONG Hong LU Xinyao ZHUGE Bin FANG Huiying SONG Jian
1Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
2School of Biotechnology, Research Centre of Industrial Microbiology, Jiangnan University, Wuxi 214122, China
3School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
关键词:
 Acetobacter sp.13-丙二醇3-羟基丙酸催化特性
Keywords:
 Acetobacter sp. 13-propanediol 3-hydroxypropionic acid catalytic properties
分类号:
Q819
DOI:
10.3724/SP.J.1145.2014.03003
文献标志码:
A
摘要:
3-羟基丙酸(3-HP)是一种具有重要经济价值的新兴平台化合物,可用来合成多种化工产品和特种生物降解材料. 本研究以1,3-丙二醇(1,3-PDO)为底物全细胞催化合成3-HP. 通过菌株筛选和ESI-MS验证共得到3株目的微生物,经鉴定比较,Acetobacter sp.催化合成3-HP性能最高,10 g L-1 1,3-PDO经7 h可生成11.65 g L-1的3-HP,摩尔转化率高达98.4%. 对Acetobacter sp.底物催化特异性研究表明该菌株对其他相关醇类如乙二醇、戊醇、苯甲醇、苯乙醇等具有不同程度的催化能力,Acetobacter sp.对甘油仅具有微弱催化活性. 研究表明Ca2+、Mg2+、Fe3+能够显著提高细胞催化合成3-HP的速率,向全细胞催化液中加入终浓度0.01 mol L-1的CaCl2,细胞催化活性提高了11.6%. 同时考察了氧载体和表面活性剂、贮存温度、菌体重复利用对Acetobacter sp.催化活性的影响并获得了该菌株催化合成3-HP的特性. 利用Acetobacter sp.细胞催化1,3-PDO,为3-HP的制备提供了一种新的可能.
Abstract:
3-hydroxypropionic acid (3-HP) is one of the strategic building blocks with highly-economic value. This study aimed to screen microbial strains catalyzing 1,3-propanediol (1,3-PDO) to 3-HP, and to understand their catalytic properties. The strains were isolated through transparent circle method, and identified by morphological analysis, biochemical properties and 16S/18S rDNA gene sequences. The products were confirmed by HPLC and ESI-MS. The catalytic activity of the target strain was represented by the average 3-HP production rate in 6 h. Three different strains were screened, among them strain Acetobacter sp. with the best catalytic performance was used as biocatalyst in the subsequent experiments. After 7 h biocatalysis, 11.65 g L-1 3-HP was obtained with a high molar conversion (98.4%). Acetobacter sp. catalytic specificity showed that the strain could also catalyze ethylene glycol, amyl alcohol, benzyl alcohol, phenylethyl alcohol to a certain extent, but having weak catalytic activity on glycerol. It was founded that Ca2+, Mg2+, Fe3+ could significantly improve 3-HP production rate, Acetobacter sp. catalytic activity increased 11.6% when 0.01 mol L-1 CaCl2 was added to the biocatalytic system. Factors including oxygen carriers and surface active agents, storage temperature and cell reusability also influenced the catalytic activity of Acetobacter sp. To the best of our knowledge, this is the first report describing the production of 3-HP from 1,3-PDO by Acetobacter strains. The biocatalysis procedure introduced in this study can provide an economically and technically promising alternative for 3-HP production.

参考文献/References:

 1 Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals [J]. Chem Rev, 2007, 107: 2411-2502
2 Zhu B, Li J, He Y, Yamane H, Kimura Y, Nishida H, Inoue Y. Effect of steric hindrance on hydrogen-bonding interaction between polyesters and natural polyphenol catechin [J]. J Appl Polym Sci, 2004, 91: 3565-3573
3 Werpy TA, Holladay JE. White JF. Top Value Added Chemicals From Biomass: I. Results of Screening For Potential Candidates From Sugars and Synthesis Gas [M]. Pacific Northwest National Laboratory (PNNL), Richland, WA (US), 2004. 28-36
4 Meng XS, Abraham T, Tsobanakis P. Process for preparing 3-hydroxycarboxylic acids [P]. US, 20,070,015,936. 2004
5 Jiang XL, Meng X, Xian M. Biosynthetic pathways for 3-hydroxypropionic acid production [J]. Appl Microbiol Biotechnol, 2009, 82: 995-1003
6 王璐, 张宏武, 张晓梅, 许赣荣. 微生物对生物柴油副产物甘油的利用研究进展[J]. 应用与环境生物学报, 2008, 14 (6): 885-889 [Wang L, Zhang HW, Zhang XM, Xu GR. Progress in research of microbial utilization of glycerol-containing wastes from biodiesel production [J]. Chin J Appl Environ Biol, 2008, 14 (6): 885-889]
7 Garai-Ibabe G, Ibarburu I, Berregi I, Berregi I, Claisse O, Lonvaud-Funel A, Irastorza A, Dueñas, MT. Glycerol metabolism and bitterness producing lactic acid bacteria in cidermaking [J]. Intern J Food Microbiol, 2008, 121: 253-261
8 张晓梅, 诸葛斌, 许正宏, 窦文芳, 黄瑞, 许赣荣. 产3-羟基丙酸重组菌的构建及其转化甘油的研究[J]. 生物技术通报, 2013, 6: 200-208 [Zhang XM, Zhuge B, Xu ZH, Dou WF, Huang R, Xu GR. Construction of novel recombinant Escherichia coli capable of producing 3-hydroxypropionic acid and its conversion of glycerol [J]. Biotechnol Bull, 2013, 6: 200-208]
9 Ko Y, Ashok S, Zhou SF, Kumar V, Park S. Aldehyde dehydrogenase activity is important to the production of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumonia [J]. Process Biochem, 2012, 47: 1135-1143
10 Huang YN, Li ZM, Shimizu K, Ye Q. Simultaneous production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol by a recombinant strain of Klebsiella pneumonia [J]. Bioresour Technol, 2012, 103: 351-359
11 翟伟锋, 方慧英, 诸葛斌, 张成, 薛颖敏, 诸葛健. 促进氰钴胺素转化为腺苷钴胺素的基因表达与鉴定[J]. 应用与环境生物学报, 2012, 18 (2): 267-271 [Zhai WF, Fang HY, Zhuge B, Zhang C, Xue YM, Zhuge J. Facilitated expression and function identification of key genes converting cyanocobalamin to adenosylcobalamin [J]. Chin J Appl Environ Biol, 2012, 18 (2): 267-271]
12 Lee SH, Park SJ, Park OJ, Cho J, Rhee JW. Production of 3-hydroxypropionic acid from acrylic acid by newly isolated Rhodococcus erythropolis LG12 [J]. J Microbiol Biotechnol, 2009, 19: 474-481
13 Hasegawa J, Ogura M, Kanema H, Kawaharada H, Watanabe K. Production of β-hydroxypropionic acid from propionic acid by a Candida rugosa mutant unable to assimilate propionic acid [J]. J Ferment Technol, 1982, 60 (6): 591-594
14 范俊英, 方慧英, 诸葛斌, 诸葛健. 3-羟基丙酸高产菌株的筛选及诱变选育[J]. 微生物学通报, 2012, 39 (9): 1355-1362 [Fan JY, Fang HY, Zhuge B, Zhuge J. Isolation, identification and mutation breeding of 3-hydroxypropionic acid high production strain [J]. Microbiology, 2012, 39 (9): 1355-1362]
15 McNeill SJ. Antibiotic properties of acrylic acid, a factor in the gastrointestinal antibiosis of polar marine animals [J]. J Bacteriol, 1961, 82: 72-79
16 Behr A, Botulinski A, Schneider M, Carduck FJ. Process for preparing alkali metal salts of 3-hydroxypropionic acid [P]. US, 5321156. 1994
17 孙丽慧, 于飞飞, 郑裕国. 氧化葡萄糖酸杆菌生物催化1,3-丙二醇合成3-羟基丙酸[J]. 生物工程学报, 2012, 28 (4): 498-507 [Sun LH, Yu FF, Zheng YG. Biosynthesis of 3-hydroxypropionic acid from 1,3-propanediol by Gluconobacter oxydans ZJB09112 [J]. Chin J Biotechnol, 2012, 28 (4): 498-507]
18 Gao C, Zhang W, Huang Y, Ma CQ, Xu P. Efficient conversion of 1,2-butanediol to (R)-2-hydroxybutyric acid using whole cells of Gluconobacter oxydans [J]. Bioresour Technol, 2012, 115: 75-78

相似文献/References:

[1]徐梦宇,刘艳杰,林晖,等.假单胞菌催化的碳碳双键不对称还原[J].应用与环境生物学报,2014,20(05):798.[doi:10.3724/SP.J.1145.2014.03034]
 XU Mengyu,LIU Yanjie,LIN Hui,et al. Asymmetric reduction of C=C bond catalyzed with Pseudomonas species[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):798.[doi:10.3724/SP.J.1145.2014.03034]
[2]刘艳,徐岳松,吴茜,等. 雨生红球藻培养和产油脂工艺的优化[J].应用与环境生物学报,2014,20(05):809.[doi:10.3724/SP.J.1145.2014.01036]
 LIU Yan,XU Yuesong,WU Qian,et al. Optimization of Haematococcus pluvialis culture and lipid production process[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):809.[doi:10.3724/SP.J.1145.2014.01036]
[3]杨云喜,李佩,徐岳松,等. 产抗菌肽乳酸菌的分离、鉴定及培养条件优化[J].应用与环境生物学报,2014,20(05):817.[doi:10.3724/SP.J.1145.2013.12044]
 YANG Yunxi,LI Pei,XU Yuesong,et al. Isolation and identification of antimicrobial peptides-producing lactic acid bacteria and optimization of the culture conditions[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):817.[doi:10.3724/SP.J.1145.2013.12044]
[4]程才璎,刘晓风,袁月祥,等.酱香型白酒酒曲和连续七轮次堆积酒醅的细菌群落结构[J].应用与环境生物学报,2014,20(05):825.[doi:10.3724/SP.J.1145.2014.03035]
 CHENG Caiying,LIU Xiaofeng,YUAN Yuexiang,et al. Bacterial community structure in distiller’s yeast and accumulated fermented grains of Maotai-flavor liquor[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):825.[doi:10.3724/SP.J.1145.2014.03035]
[5]郭亚萍,张国庆,陈青君,等. 双孢蘑菇堆肥过程中细菌群落结构分析[J].应用与环境生物学报,2014,20(05):832.[doi:10.3724/SP.J.1145.2014.03020]
 GUO Yaping,ZHANG Guoqing,CHEN Qingjun,et al. Bacterial community structure analysis for mushroom (Agaricus bisporus) compost using PCR-DGGE technique[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):832.[doi:10.3724/SP.J.1145.2014.03020]
[6]毕京芳,黄钧,关梦龙,等. 微生物菌剂发酵中草药渣生产有机肥[J].应用与环境生物学报,2014,20(05):840.[doi:10.3724/SP.J.1145.2014.03051]
 BI Jingfang,HUANG Jun,GUAN Menglong,et al. Composting Chinese herbal residues with inoculum of microbial agents to produce organic fertilizer[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):840.[doi:10.3724/SP.J.1145.2014.03051]
[7]贺文君,李甫,杨春艳,等. 川滇蔷薇果实中的三萜类化学成分[J].应用与环境生物学报,2014,20(05):846.[doi:10.3724/SP.J.1145.2014.02022]
 HE Wenjun,LI Fu,YANG Chunyan,et al. Studies on the triterpenoids from Rosa soulieana fruit[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):846.[doi:10.3724/SP.J.1145.2014.02022]
[8]李虎,廖丹,苏建强,等.外来种互花米草根内细菌多样性及功能[J].应用与环境生物学报,2014,20(05):856.[doi:10.3724/SP.J.1145.2014.03027]
 LI Hu,LIAO Dan,SU Jianqiang,et al. Diversity and function of endophytic bacteria in roots of exotic plant Spartina alterniflora[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):856.[doi:10.3724/SP.J.1145.2014.03027]
[9]徐佳奕,刘守海,徐兆礼,等. 三沙湾浮游动物群落对水团季节变化的响应[J].应用与环境生物学报,2014,20(05):869.[doi:10.3724/SP.J.1145.2014.01038]
 XU Jiayi,LIU Shouhai,XU Zhaoli,et al.Responses of zooplankton community to changes in water masses in the Sansha Bay[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):869.[doi:10.3724/SP.J.1145.2014.01038]
[10]原秀云,刘金龙,曾晓茂,等. 3种麻蜥MHC I类基因外显子3和外显子4序列特征[J].应用与环境生物学报,2014,20(05):877.[doi:10.3724/SP.J.1145.2014.02003]
 YUAN Xiuyun,LIU Jinlong,ZENG Xiaomao,et al. Characterization of major histocompatibility complex (MHC) class I loci exon 3 and exon 4 in three racerunner species (Squamata: Lacertidae: Eremias)[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):877.[doi:10.3724/SP.J.1145.2014.02003]

备注/Memo

备注/Memo:
 江苏省青年自然科学基金(BK20140134,BK20140138)、国家高技术研究发展计划(863计划)项目(2012AA021201)和国家自然科学基金项目(31270080)资助 Supported by the Natural Science Foundation of Jiangsu Province (BK20140134, BK20140138), the National 863 High-Technology Research and Development Program of China (2012AA021201) and the National Natural Science Foundation of China (31270080)
更新日期/Last Update: 2014-10-30