|本期目录/Table of Contents|

[1]刘玉倩,魏婷,张超,等. 超敏感酵母HUG1-yEGFP生物传感器遗传毒性化合物检测方法优化[J].应用与环境生物学报,2014,20(05):919-924.[doi:10.3724/SP.J.1145.2014.01041]
 LIU Yuqian,WEI Ting,ZHANG Chao,et al. An optimized genotoxin detection method based on super-sensitive yeast HUG1-yEGFP biosensor[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):919-924.[doi:10.3724/SP.J.1145.2014.01041]
点击复制

 超敏感酵母HUG1-yEGFP生物传感器遗传毒性化合物检测方法优化()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
20卷
期数:
2014年05期
页码:
919-924
栏目:
技术与方法
出版日期:
2014-10-25

文章信息/Info

Title:
 An optimized genotoxin detection method based on super-sensitive yeast HUG1-yEGFP biosensor
作者:
 刘玉倩 魏婷 张超 张晓华 袁丽 戴和平
1中国科学院水生生物研究所淡水生态和生物技术国家重点实验室 武汉 430072
2中国科学院大学 北京 100049
Author(s):
 LIU Yuqian WEI Ting ZHANG Chao ZHANG Xiaohua YUAN Li DAI Heping
1Institute of Hydrobiology, State Key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of Sciences, Wuhan 430072, China
2University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
 生物传感器超敏感型酵母遗传毒性化合物高通量检测
Keywords:
 biosensor yeast genotoxin fluorescence induction
分类号:
Q3-3 : X82
DOI:
10.3724/SP.J.1145.2014.01041
文献标志码:
A
摘要:
基于酵母DNA损伤响应机制,本实验室构建了超敏感型酵母HUG1-yEGFP生物传感器,检测方法主要依靠流式细胞仪. 为了简化检测方法,实现高通量检测,本研究通过摸索和测试各种条件,建立了优化的、更适合于96孔板的荧光酶标仪的检测方法. 结果显示:F1培养基可以作为一种本底荧光较低的培养基用于荧光酶标仪的检测,使用96孔透明底黑色细胞培养板的检测菌液体积为100 μL,初始菌液浓度OD600 nm值为0.05. 在此优化检测条件下,超敏感酵母HUG1-yEGFP生物传感器与典型的遗传毒性化合物甲磺酸甲酯(MMS)可以建立良好的剂效和时效关系,说明该生物传感器已具备了实际应用的实验基础.
Abstract:
A super-sensitive yeast HUG1-yEGFP biosensor based on DNA damage response has been constructed in our laboratory. The biosensor was detected mainly by flow cytometer. This study aimed to simplify the detection by constructing a new detection assay with high throughput and optimize the detection conditions to adapt to 96-well microtiter plate. The super-sensitive yeast cells carrying genotoxic detecting biosensors were treated with MMS. The yEGFP-fluorescent intensity was measured by multifunctional fluorescent microplate reader. The result found F1 as the best yeast culture medium with low background of fluorescence for microplate fluorescent detection. For a high throughput genotoxin detection using 96-well microtiter plates with black walls and transparent bottoms, the best culture volume of yeast was 100 μL, and initial optical density at 600nm was 0.05. The dose-effect and time-effect between super-sensitive yeast biosensor and MMS under the optimized detection conditions showed that this biosensor is promising for practical application.

参考文献/References:


1 van der Oost R, Beyer J, Vermeulen NPE. Fish bioaccumulation and biomarkers in environmental risk assessment: a review [J]. Environ Toxicol Pharmacol, 2003, 13 (2): 57-149<br/>

2 Vainio H. Use of biomarkers in risk assessment [J]. Intern J Hygiene Environ Health, 2001, 204 (2-3): 91-102<br/>

3 Jia XM, Zhu Y, Xiao W. A stable and sensitive genotoxic testing system based on DNA damage induced gene expression in Saccharomyces cerevisiae [J]. Mutat Res-Genet Toxicol Environ Mutagen, 2002, 519 (1-2): 83-92 <br/>

4 Cahill PA, Knight AW, Billinton N, Barker MG, Walsh L, Keenan PO, Williams CV, Tweats DJ, Walmsley RM. The GreenScreen(R) genotoxicity assay: a screening validation programme [J]. Mutagenesis, 2004, 19 (2): 105-119. <br/>

5 Wei T, Zhang C, Xu X, Hanna M, Zhang XH, Wang Y. Construction and evaluation of two biosensors based on yeast transcriptional response to genotoxic chemicals [J]. Biosens Bioelectron, 2013, 44: 138-145<br/>

6 Afanassiev V, Sefton M, Barker G, Walmsley RM. Application of yeast cells transformed with GFP expression constructs containing the RAD54 or RNR2 promoter as a test for the genotoxic potential of chemical substances [J]. Mutat Res-Genet Toxicol Environ Mutagen, 2000, 464 (2): 297-308 <br/>

7 Walsh L, Hastwell P W, Keenan P O, Knight A W, Billinton , Walmsley R M. Genetic modification and variations in solvent increase the sensitivity of the yeast RAD54-GFP genotoxicity assay [J]. Mutagenesis, 2005, 20 (5): 317-327<br/>

8 Benton MG, Glasser NR, and Palecek SP. The utilization of a Saccharomyces cerevisiae HUG1P-GFP promoter-reporter construct for the selective detection of DNA damage [J]. Mutat Res-Genet Toxicol Environ Mutagen, 2007, 633(1): 21-34 <br/>

9 Basrai MA, Velculescu V, Kinzler KW, and Hieter P. NORF5/HUG1 is a component of the MEC1-mediated checkpoint response to DNA damage and replication arrest in Saccharomyces cerevisiae [J]. Mol Cell Biol, 1999, 19 (10): 7041-7049 <br/>

10 Zhang M, Liang YP, Zhang XH, Xu Y, Dai HP, XiaoW. Deletion of yeast CWP genes enhances cell permeability to genotoxic agents [J]. Toxicol Sci, 2008, 103 (1): 68-76 <br/>

11 Zhang M, Michelle H, Li J, Butcher S, Dai HP, XiaoW. Creation of a hyperpermeable yeast strain to genotoxic agents through combined inactivation of PDR and CWP genes [J]. Toxicol Sci, 2010, 113 (2): 401-411 <br/>

12 Zhang M, Zhang C, Li J, Michelle H, Zhang XH, Dai HP, XiaoW. Inactivation of YAP1 enhances sensitivity of the yeast RNR3-lacZ genotoxicity testing system to a broad range of DNA-damaging agents [J]. Toxicol Sci, 2011, 120 (2): 310-321 <br/>

13 Sherman F. Getting started with yeast [J]. Methods Enzymol, 2002, 350: 3-41 <br/>

14 Walmsley RM, Gardner DCJ, Oliver SG. Stability of a cloned gene in yeast grown in chemostat culture [J]. Mol Gen Genet, 1983, 192: 361-365<br/>

15 Beranek DT. Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents [J]. Mutat Res, 1990, 231 (1): 11-30<br/>

16 Lundin C, North M, Erixon K, Walters K, Jenssen D, Goldmanand SHA, Helleday T. Methyl methanesulfonate (MMS) produces heat-labile DNA damage but no detectable in vivo DNA double-strand breaks [J]. Nucl Acids Res, 2005, 33 (12): 3799-3811

相似文献/References:

[1]徐梦宇,刘艳杰,林晖,等.假单胞菌催化的碳碳双键不对称还原[J].应用与环境生物学报,2014,20(05):798.[doi:10.3724/SP.J.1145.2014.03034]
 XU Mengyu,LIU Yanjie,LIN Hui,et al. Asymmetric reduction of C=C bond catalyzed with Pseudomonas species[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):798.[doi:10.3724/SP.J.1145.2014.03034]
[2]吴金鑫,宗红,陆信曜,等.高效催化合成3-羟基丙酸的菌株特性[J].应用与环境生物学报,2014,20(05):804.[doi:10.3724/SP.J.1145.2014.03003]
 WU Jinxin,ZONG Hong,LU Xinyao,et al. Characterization of a strain catalyzing biosynthesis of 3-hydroxypropionic acid[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):804.[doi:10.3724/SP.J.1145.2014.03003]
[3]刘艳,徐岳松,吴茜,等. 雨生红球藻培养和产油脂工艺的优化[J].应用与环境生物学报,2014,20(05):809.[doi:10.3724/SP.J.1145.2014.01036]
 LIU Yan,XU Yuesong,WU Qian,et al. Optimization of Haematococcus pluvialis culture and lipid production process[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):809.[doi:10.3724/SP.J.1145.2014.01036]
[4]杨云喜,李佩,徐岳松,等. 产抗菌肽乳酸菌的分离、鉴定及培养条件优化[J].应用与环境生物学报,2014,20(05):817.[doi:10.3724/SP.J.1145.2013.12044]
 YANG Yunxi,LI Pei,XU Yuesong,et al. Isolation and identification of antimicrobial peptides-producing lactic acid bacteria and optimization of the culture conditions[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):817.[doi:10.3724/SP.J.1145.2013.12044]
[5]程才璎,刘晓风,袁月祥,等.酱香型白酒酒曲和连续七轮次堆积酒醅的细菌群落结构[J].应用与环境生物学报,2014,20(05):825.[doi:10.3724/SP.J.1145.2014.03035]
 CHENG Caiying,LIU Xiaofeng,YUAN Yuexiang,et al. Bacterial community structure in distiller’s yeast and accumulated fermented grains of Maotai-flavor liquor[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):825.[doi:10.3724/SP.J.1145.2014.03035]
[6]郭亚萍,张国庆,陈青君,等. 双孢蘑菇堆肥过程中细菌群落结构分析[J].应用与环境生物学报,2014,20(05):832.[doi:10.3724/SP.J.1145.2014.03020]
 GUO Yaping,ZHANG Guoqing,CHEN Qingjun,et al. Bacterial community structure analysis for mushroom (Agaricus bisporus) compost using PCR-DGGE technique[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):832.[doi:10.3724/SP.J.1145.2014.03020]
[7]毕京芳,黄钧,关梦龙,等. 微生物菌剂发酵中草药渣生产有机肥[J].应用与环境生物学报,2014,20(05):840.[doi:10.3724/SP.J.1145.2014.03051]
 BI Jingfang,HUANG Jun,GUAN Menglong,et al. Composting Chinese herbal residues with inoculum of microbial agents to produce organic fertilizer[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):840.[doi:10.3724/SP.J.1145.2014.03051]
[8]贺文君,李甫,杨春艳,等. 川滇蔷薇果实中的三萜类化学成分[J].应用与环境生物学报,2014,20(05):846.[doi:10.3724/SP.J.1145.2014.02022]
 HE Wenjun,LI Fu,YANG Chunyan,et al. Studies on the triterpenoids from Rosa soulieana fruit[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):846.[doi:10.3724/SP.J.1145.2014.02022]
[9]李虎,廖丹,苏建强,等.外来种互花米草根内细菌多样性及功能[J].应用与环境生物学报,2014,20(05):856.[doi:10.3724/SP.J.1145.2014.03027]
 LI Hu,LIAO Dan,SU Jianqiang,et al. Diversity and function of endophytic bacteria in roots of exotic plant Spartina alterniflora[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):856.[doi:10.3724/SP.J.1145.2014.03027]
[10]徐佳奕,刘守海,徐兆礼,等. 三沙湾浮游动物群落对水团季节变化的响应[J].应用与环境生物学报,2014,20(05):869.[doi:10.3724/SP.J.1145.2014.01038]
 XU Jiayi,LIU Shouhai,XU Zhaoli,et al.Responses of zooplankton community to changes in water masses in the Sansha Bay[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):869.[doi:10.3724/SP.J.1145.2014.01038]

备注/Memo

备注/Memo:
 国家自然科学基金重点项目(21037004)与淡水生态和生物技术国家重点实验室项目(2012FBZ10)资助 Supported by the National Natural Science Foundation of China (21037004) and the State Key Laboratory of Freshwater Ecology and Biotechnology (2012FBZ10)
更新日期/Last Update: 2014-10-30