|本期目录/Table of Contents|

[1]周利,汤岳琴,孙照勇,等.基于连续发酵驯化的高耐盐性酿酒酵母的育种[J].应用与环境生物学报,2014,20(03):360-370.[doi:10.3724/SP.J.1145.2014.11032]
 ZHOU Li,TANG Yueqin,SUN Zhaoyong,et al.Breeding of high salt-tolerant Saccharomyces cerevisiae strains based on continuous ethanol fermentation[J].Chinese Journal of Applied & Environmental Biology,2014,20(03):360-370.[doi:10.3724/SP.J.1145.2014.11032]
点击复制

基于连续发酵驯化的高耐盐性酿酒酵母的育种()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
20卷
期数:
2014年03期
页码:
360-370
栏目:
研究论文
出版日期:
2014-06-25

文章信息/Info

Title:
Breeding of high salt-tolerant Saccharomyces cerevisiae strains based on continuous ethanol fermentation
作者:
周利汤岳琴孙照勇木田建次
四川大学建筑与环境学院 成都 610065
Author(s):
ZHOU Li TANG Yueqin SUN Zhaoyong KIDA Kenji
Architecture and Environment College, Sichuan University, Chengdu 610065, China
关键词:
酿酒酵母耐盐性乙醇连续发酵四孢子分析燃料乙醇海藻糖
Keywords:
Saccharomyces cerevisiae salt tolerance continuous ethanol fermentation tetrad analysis fuel ethanol trehalose
分类号:
TQ920.1
DOI:
10.3724/SP.J.1145.2014.11032
文献标志码:
A
摘要:
耐盐酿酒酵母菌株的育种对降低燃料乙醇生产成本具有重要意义. 以具有优秀乙醇发酵能力的工业酿酒母菌株KF-7为出发菌株,通过连续发酵、产孢子及孢子培育、交配等获取稳定耐盐菌株. 在盐胁迫条件下利用连续乙醇发酵驯化获得了耐盐突变菌株KF-7(4). 在此基础上,通过孢子分离、培养、评价和交配,获得两株耐盐二倍体菌株KF-7(4)-3与KF-7-D1. 这3株耐盐菌株在50次转接过程中保持着稳定的耐盐性. 并且在9% KCl浓度下,3株耐盐菌株的乙醇发酵能力显著优于出发菌株KF-7:在15% YPD培养基中,发酵36 h时的乙醇浓度比出发菌株KF-7提高了21%. 有盐和无盐条件下发酵过程中胞内海藻糖含量分析表明,突变菌株KF-7(4)和菌株KF-7(4)-3即使在无盐条件下的海藻糖积累能力明显高于出发菌株KF-7. 本研究获得的变异酿酒酵母菌株具有较高的耐盐性和稳定性,耐盐性与胞内海藻糖积累能力提高相关. 因此,基于连续发酵的进化工程手段可以有效地用于培育具有某种稳定性状的酿酒酵母菌株.
Abstract:
Waste biomass resources such as molasses and kitchen waste are important raw materials for the production of fuel ethanol. Breeding of salt-tolerant Saccharomyces cerevisiae strain is of great importance for reducing the production cost of fuel ethanol from these wastes with high salt content. Strain KF-7, an industrial strain with excellent ethanol fermentation ability, was used as original strain in this study. Strains with stable salt tolerance were bred through continuous fermentation followed by sporulation, spore germination and mating. The intracellular trehalose contents of mutants and parent strain KF-7 were compared to reveal the relationship between the salt tolerance and the ability of trehalose accumulation. By continuous ethanol fermentation under salt stress condition, mutant strain KF-7(4) with improved salt tolerance was isolated. Salt tolerant strains KF-7(4)-3 and KF-7-D1 were obtained, respectively, through spore germination and mating of salt tolerant haploids of mutant strain KF-7(4). The improved salt tolerance of these three strains remained stable after 50-time subcultivation. Under the condition of 9% KCl, the ethanol fermentation ability of the three strains was higher than that of the original strain KF-7. Compared to strain KF-7, they produced approximately 21% higher ethanol at 36 h when 15% YPD medium was used. The ability of trehalose accumulation of strains KF-7(4) and KF-7(4)-3 was significantly higher than that of the original strain KF-7 even without salt stress. The results showed stable and higher salt tolerance of S. cerevisiae mutant strains than their parent strain KF-7, which is probably due to the improved ability of trehalose accumulation. Evolution engineering based on continuous fermentation showed high potential for breeding S. cerevisiae mutants with expected characters.

参考文献/References:

1 Balat M. Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review [J]. Energy Convers Manage, 2011, 52 (2): 858-875
2 Hsu CL, Chang KS, Lai MZ, Chang TC, Chang YH, Jang HD. Pretreatment and hydrolysis of cellulosic agricultural wastes with a cellulase-producing Streptomyces for bioethanol production [J]. Biomass Bioenergy, 2011, 35 (5): 1878-1884
3 Kida K, Asano SI, Yamadaki M, Iwasaki K, Yamaguchi T, Sonoda Y. Continuous high-ethanol fermentation from cane molasses by a flocculating yeast [J]. J Ferment Bioeng, 1990, 69 (1): 39-45
4 Kida K, Kume K, Morinura S, Sonoda Y. Repeated-batch fermentation process using a thermotolerant flocculating yeast constructed by protoplast fusion [J]. J Ferment Bioeng, 1992, 74 (3):169-73
5 Tang YQ, Koike Y, Liu K, An MZ, Morinura S, Wu XL, Kida K. Ethanol production from kitchen waste using the ?occulating yeast Saccharomyces cerevisiae strain KF-7 [J]. Biomass Bioenergy, 2008, 32 (11):1037-1045
6 Tang YQ, An MZ, Zhong YL, Morinura S, Wu XL, Kida K. Continuous ethanol fermentation from non-sulfuric acid-washed molasses using traditional stirred tank reactors and the flocculating yeast strain KF-7 [J]. J Biosci Bioeng, 2010, 109 (1): 41-46
7 Koike Y, An MZ, Tang YQ, Syo T, Osaka N, Morinura S, Kida K. Production of fuel ethanol and methane from garbage by high-efficiency two-stage fermentation process [J]. J Biosci Bioeng, 2009, 108 (6): 508-512
8 木田建次, 森村 茂, 鐘亜玲. エネルギー多様化のための凝集性酵母による糖蜜からのエタノール生産[J]. 生物工学会誌, 1997, 75 (1): 15-34 [Kida K, Morinura S, Zhong YL. Production of ethanol from molasses by flocculating yeast for use as an alternative energy source monograph [J]. Seibutsu-kogaku Kaishi, 1997, 75 (1): 15-34]
9 Hirasawa T, Nakakura Y, Yoshikawa K, Ashitani K. Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S. Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray [J]. Appl Microbiol Biotechnol, 2006, 70 (3): 346-357
10 Dhar R, Sagesser R, Weikert C, Yuan J, Wagner A. Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution [J]. J Evol Biol, 2011, 24: 1135-1153
11 Blomberg A. Global changes in protein synthesis during adaptation of the yeast Saccharomyces cerevisiae to 0.7 M NaCl [J]. J Bacteriol, 1995, 177 (12): 3563-3572
12 Cene G, Nina GC, Martina T. Genetic resources of extremotolerant fungi: a method for identi?cation of genes conferring stress tolerance [J]. Bioresour Technol, 2012, 111: 360-367
13 Pickin KA, Ezenwajiaku N, Overcash H, Sethi M, Knecht MR, Paumi CM. Suppression of Ycf1p function by Cka1p-dependent phosphorylation is attenuated in response to salt stress [J]. FEMS Yeast Res, 2010, 10: 839-857
14 Sauer U. Evolutionary engineering of industrially important microbial phenotypes [J]. Adv Biochem Eng/Biotechnol, 2001, 73: 129-169
15 Morimura S, Zhong YL, Kida K. Ethanol production by repeated-batch fermentation at high temperature in a molasses medium containing a high concentration of total sugar by a thermotolerant flocculating yeast with improved salt-tolerance [J]. J Ferment Bioeng, 1997, 83 (3): 271-274
16 Tang YQ, An MZ, Liu K, Saki N, Toru S, Morimura S, Kenji K. Ethanol production from acid hydrolysate of wood biomass using the ?occulating yeast Saccharomyces cerevisiae strain KF-7 [J]. Process Biochem, 2006, 41 (4): 909-914
17 Watanabe D, Araki Y, Zhou Y, Maeya N, Akao T, Shimoia H. A loss-of-function mutation in the PAS kinase Rim15p is related to defective quiescence entry and high fermentation rates of Saccharomyces cerevisiae sake yeast strains [J]. Appl Environ Microbiol, 2012, 78 (11): 4008-4016
18 Urbanczyk H, Noguchi C, Wu H, Watanabe D, Akao T, Takagi H, Shimoi H. Sake yeast strains have difficulty in entering a quiescent state after cell growth cessation [J]. J Biosci Bioeng, 2011, 112 (1): 44-48
19 Nevoigt E, Stahl U. Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae [J]. Microbiol Rev, 1997, 21: 231-241
20 Sharma SC. A possible role of trehalose in osmotolerance and ethanol tolerance in Saccharomyces cerevisiae [J]. FEMS Microbiol Lett, 1997, 152: 11-15
21 Gent DP, Morimura S, Ujhe I, Kida K. A study of viability and trehalose metabolism in Saccharomyces cerevisiae vacuolar deficient mutant SKD2 [J]. J Inst Brew, 1997, 103: 381-384
22 An MZ, Tang YQ, Kanako M, Liu ZS, Morimura S, Kida K. Enhanced thermotolerance for ethanol fermentation of Saccharomyces cerevisiae strain by overexpression of the gene coding for trehalose-6-phosphate synthase [J]. Biotechnol Lett, 2011, 33 (7): 1367-1374

相似文献/References:

[1]郜瑞莹,王建龙.酿酒酵母生物吸附Cu2+的动力学及吸附平衡研究[J].应用与环境生物学报,2007,13(06):848.
 GAO Ruiying,et al..Kinetics and Equilibrium of Cu2+ Biosorption by Dried Biomass of Saccharomyces cerevisia[J].Chinese Journal of Applied & Environmental Biology,2007,13(03):848.
[2]杨雪飞,王瑛,罗建平.铁皮石斛外源lea3基因的转化及耐盐性分析[J].应用与环境生物学报,2010,16(05):622.[doi:10.3724/SP.J.1145.2010.00622]
 YANG Xuefei,WANG Ying,LUO Jianping.Transformation of lea3 Gene into Dendrobium candidum Wall. ex Lindl for Enhancing Its Salt Tolerance[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):622.[doi:10.3724/SP.J.1145.2010.00622]
[3]李岩,王海燕,张义正.甘薯蔗糖转运蛋白IbSUT1x在酵母细胞中的定位[J].应用与环境生物学报,2010,16(06):798.[doi:10.3724/SP.J.1145.2010.00798]
 LI Yan,WANG Haiyan,ZHANG Yizheng.Localization of IbSUT1x Protein from Ipomoea batatas (L.) Lam in Yeast Cells[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):798.[doi:10.3724/SP.J.1145.2010.00798]
[4]王中浩,范智勇,王亭亭,等.盐生杜氏藻硝酸盐转运蛋白基因的表达模式[J].应用与环境生物学报,2013,19(02):231.[doi:10.3724/SP.J.1145.2013.00231]
 WANG Zhonghao,FAN Zhiyong,WANG Tingting,et al.Expression Patterns of Nitrate Transporter Gene in Dunaliella salina[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):231.[doi:10.3724/SP.J.1145.2013.00231]
[5]李宇浩,靳艳玲,龙飞,等.降粘酶在新鲜木薯发酵生产高浓度乙醇中的应用[J].应用与环境生物学报,2013,19(03):501.[doi:10.3724/SP.J.1145.2013.00501]
 LI Yuhao,JIN Yanling,LONG Fei,et al.Using Viscosity Reducing Enzyme as Annexing Agent in the Very High Gravity Ethanol Fermentation with Fresh Cassava[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):501.[doi:10.3724/SP.J.1145.2013.00501]
[6]柯崇榕,吴毕莎,邵庆伟,等.酿酒酵母PDC1基因过表达菌株的构建[J].应用与环境生物学报,2013,19(04):704.[doi:10.3724/SP.J.1145.2013.00704]
 KE Chongrong,WU Bisha,SHAO Qingwei,et al.Construction of Saccharomyces cescerevisiae Mutant with Overexpression of PDC1 Gene[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):704.[doi:10.3724/SP.J.1145.2013.00704]
[7]盛冠一,诸葛斌,宗红,等.高灵敏度铜抗性酿酒酵母表达系统的构建与应用[J].应用与环境生物学报,2014,20(03):357.[doi:10.3724/SP.J.1145.2014.12033]
 SHENG Guanyi,ZHUGE Bin,ZONG Hong,et al.Construction and application of the high sensitivity expression system of copper-resistant Saccharomyces cerevisiae[J].Chinese Journal of Applied & Environmental Biology,2014,20(03):357.[doi:10.3724/SP.J.1145.2014.12033]
[8]张明明 万青青 张克俞 熊 亮 白凤武,赵心清**.过表达分支酸歧化酶编码基因ARO7对酿酒酵母抑制物耐受性的影响*[J].应用与环境生物学报,2016,22(02):201.[doi:10.3724/SP.J.1145.2015.09013]
 ZHANG Mingming,WAN Qingqing,ZHANG Keyu,et al.Effect of overexpression of chorismate mutase encoding gene ARO7 on theinhibitor tolerance of Saccharomyces cerevisiae[J].Chinese Journal of Applied & Environmental Biology,2016,22(03):201.[doi:10.3724/SP.J.1145.2015.09013]
[9]谷鸿宇,诸葛斌,方慧英,等.渗透压调控启动子表达木糖醇脱氢酶基因XYL2对重组酿酒酵母木糖代谢的影响[J].应用与环境生物学报,2016,22(06):1122.[doi:10.3724/SP.J.1145.2016.01035]
 GU Hongyu,ZHUGE Bin,et al.Effect of controlled overexpression of XYL2 coding for xyltiol dehydrogenase by osmo-responsive promoters on xylose metabolism in Saccharomyces cerevisiae[J].Chinese Journal of Applied & Environmental Biology,2016,22(03):1122.[doi:10.3724/SP.J.1145.2016.01035]
[10]张影,苟敏,孙照勇,等.混合糖发酵条件下甲酸抑制木糖发酵的机制[J].应用与环境生物学报,2017,23(06):990.[doi:10.3724/SP.J.1145.2017.02011]
 ZHANG Ying,GOU Min,SUN Zhaoyong,et al.The inhibitory mechanism of action of formic acid on xylose fermentation during mixed sugar fermentation[J].Chinese Journal of Applied & Environmental Biology,2017,23(03):990.[doi:10.3724/SP.J.1145.2017.02011]

备注/Memo

备注/Memo:
国家自然科学基金项目(31170093)资助 Supported by the National Natural Science Foundation of China (31170093)
更新日期/Last Update: 2014-07-01