|本期目录/Table of Contents|

[1]张尧,张闻杰,蒋永,等.生物电化学系统固定二氧化碳同时产生乙酸和丁酸[J].应用与环境生物学报,2014,20(02):174-178.[doi:10.3724/SP.J.1145.2014.00174]
 ZHANG Yao,ZHANG Wenjie,JIANG Yong,et al.Simultaneous microbial electrosynthesis of acetate and butyrate from carbon dioxide in bioelectrochemical systems[J].Chinese Journal of Applied & Environmental Biology,2014,20(02):174-178.[doi:10.3724/SP.J.1145.2014.00174]
点击复制

生物电化学系统固定二氧化碳同时产生乙酸和丁酸()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
20卷
期数:
2014年02期
页码:
174-178
栏目:
研究论文
出版日期:
2014-04-25

文章信息/Info

Title:
Simultaneous microbial electrosynthesis of acetate and butyrate from carbon dioxide in bioelectrochemical systems
作者:
张尧张闻杰蒋永苏敏陶勇李大平
1 中国科学院成都生物研究所环境与应用微生物重点实验室 成都 610041 2 四川大学生命科学学院 成都 610065 3 中国科学院大学 北京 100049
Author(s):
ZHANG Yao ZHANG Wenjie JIANG Yong SU Min TAO Yong LI Daping
1Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2School of Life Sciences, Sichuan University, Chengdu 610065, China 3University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
生物电化学系统微生物电合成二氧化碳乙酸丁酸
Keywords:
bioelectrochemical systems microbial electrosynthesis carbon dioxide acetate butyrate
分类号:
TM911.45 : Q936
DOI:
10.3724/SP.J.1145.2014.00174
文献标志码:
A
摘要:
生物电化学系统用于微生物电合成,可原位利用污水中的能量将二氧化碳固定,并生产有机物. 通过构建生物电化学系统,利用混合菌作电催化剂还原二氧化碳生成乙酸和丁酸. 设定阴极电势-0.75 V (vs Ag/AgCl),10 d的反应周期内,乙酸最大积累浓度为251.89 mg/L;丁酸从第3天开始生成,最大积累浓度为89.42 mg/L. 系统总电子回收率可达85.04%. 电化学分析表明生物阴极具有良好的催化活性. PCR-DGGE分析生物阴极主要菌群为醋酸杆菌属(Acetobacterium)和拟杆菌属(Bacteroides). 本研究证明了生物阴极具有以二氧化碳为原始底物合成乙酸,并进一步延伸碳链合成中链脂肪酸的能力,对进一步开发微生物电合成技术具有重要参考价值.
Abstract:
Bioelectrochemical systems (BESs) can be used for microbial electrosynthesis, producing organic chemicals from carbon dioxide by recovering energy from the wastewater in situ. By constructing a bioelectrochemical system, this study focused primarily on reduction of carbon dioxide to acetate and butyrate by mixed cultures as electrocatalytic agents. At a set cathode potential of -0.75 V(vs Ag/AgCl) in the build-up bioelectrochemical system, the maximum concentration of acetate was 251.89 mg/L in 10 days of a reaction cycle. Butyrate appeared on the third day of the reaction, and the maximum concentration of butyrate was 89.42 mg/L. The total electron recovery of BESs reached 85.04%. The electrochemical analysis of the biocathode showed its excellent catalytic activity. PCR-DGGE of biocathode suggested the main microbial populations were Acetobacterium and Bacteriodes. This research proved that biocathode has the ability to produce acetate with carbon dioxide as the original substrate, and to further elongate medium chain fatty acids.

参考文献/References:

1 Rabaey K. Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnological Application [M]. London: International Water Assn, 2010. 1
2 Aelterman P, Verstraete W. Bioanode performance in bioelectrochemical systems: recent improvements and prospects [J]. Trends Biotechnol, 2009, 27 (3): 168-178
3 Hamelers HV, Ter Heijne A, Sleutels TH, Jeremiasse AW, Strik DP, Buisman CJ. New applications and performance of bioelectrochemical systems [J]. Appl Microbiol Biol, 2010, 85 (6): 1673-1685
4 Huang L, Chai X, Chen G, Logan B E. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells [J]. Environ Sci Technol, 2011, 45 (11): 5025-5031
5 Lovley DR, Nevin KP. A shift in the current: new applications and concepts for microbe-electrode electron exchange [J]. Curr Opin Biotech, 2011, 22 (3): 441-448
6 Marshall CW, Ross DE, Fichot EB, Norman RS, May HD. Electrosynthesis of commodity chemicals by an autotrophic microbial community [J]. Appl Environ Microb, 2012, 78 (23): 8412-8420
7 Tandukar M, Huber S J, Onodera T, Pavlostathis S G. Biological chromium (VI) reduction in the cathode of a microbial fuel cell [J]. Environ Sci Technol, 2009, 43 (21): 8159-8165
8 Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W. Biological denitrification in microbial fuel cells [J]. Environ Sci Technol, 2007, 41 (9): 3354-3360
9 Puig S, Serra M, Vilar-Sanz A, Cabré M, Ba?eras L, Colprim J, Balaguer M D. Autotrophic nitrite removal in the cathode of microbial fuel cells [J]. Bioresour Technol, 2011, 102 (6): 4462-4467
10 Zhan GQ, Zhang LX, Li DP, Su WT, Tao Y, Qian JW. Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell [J]. Bioresour Technol, 2012, 116: 271-277
11 Strycharz SM, Woodard TL, Johnson JP, Nevin KP, Sanford RA, L?ffler FE, Lovley DR. Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi [J]. Appl Environ Microb, 2008, 74 (19): 5943-5947
12 Cheng SA, Xing DF, Call DF, Logan BE. Direct biological conversion of electrical current into methane by electromethanogenesis [J]. Environ Sci Technol, 2009, 43 (10): 3953-3958
13 Jiang Y, Su M, Zhang Y, Zhan G, Tao Y, Li D. Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate [J]. Int J Hydrogen Energ, 2013, 38 (8): 3497-3502
14 Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds [J]. MBio, 2010, 1 (2): e00103-00110
15 Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture [J]. Bioresour Technol, 2010, 101 (9): 3085-3090
16 苏敏, 蒋永, 张尧, 高平, 李大平. 生物电化学耦合H2还原CO2合成简单有机物[J]. 应用与环境生物学报, 2013, 19 (5): 827-832 [Su M, Jiang Y, Zhang Y, Gao P, Li DP. Coupled bioelectrochemical system for reducing CO2 to simple organic compounds in the presence of H2 [J]. Chin J Appl Environ Biol, 2013, 19 (5): 827-832]
17 蒋永, 苏敏, 张尧, 陶勇, 李大平. 生物电化学系统还原二氧化碳同时合成甲烷和乙酸[J]. 应用与环境生物学报, 2013, 19 (5): 833-837 [Jiang Y, Su M, Zhang Y, Zhan G, Tao Y, Li DP. Simultaneous production of methane and acetate from carbon dioxide with bioelectrochemical systems [J]. Chin J Appl Environ Biol, 2013, 19 (5): 833-837]
18 Rabaey K, Rozendal RA. Microbial electrosynthesis—revisiting the electrical route for microbial production [J]. Nat Rev Microbiol, 2010, 8 (10): 706-716
19 Fast AG, Papoutsakis ET. Stoichiometric and energetic analyses of non-photosynthetic CO2 fixation pathways to support synthetic biology strategies for production of fuels and chemicals [J]. Curr Opin Chem Eng, 2012, 1 (4): 380-395
20 Lovley DR. Powering microbes with electricity: direct electron transfer from electrodes to microbes [J]. Environ Microbiol Rep, 2011, 3 (1): 27-35
21 Rabaey K, Girguis P, Nielsen LK. Metabolic and practical considerations on microbial electrosynthesis [J]. Curr Opin Biotech, 2011, 22 (3): 371-377
22 Su WT, Zhang LX, Li DP, Zhan GQ, Qian JW, Tao Y. Dissimilatory nitrate reduction by Pseudomonas alcaliphila with an electrode as the sole electron donor [J]. Biotechnol Bioeng, 2012, 109 (11): 2904-2910
23 Peng L, You S-J, Wang J-Y. Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis [J]. Biosens Bioelectron, 2010, 25 (5): 1248-1251
24 Aulenta F, Reale P, Catervi A, Panero S, Majone M. Kinetics of trichloroethene dechlorination and methane formation by a mixed anaerobic culture in a bio-electrochemical system [J]. Electrochim Acta, 2008, 53 (16): 5300-5305
25 Gregory KB, Bond DR, Lovley DR. Graphite electrodes as electron donors for anaerobic respiration [J]. Environ Microbiol, 2004, 6 (6): 596-604
26 Gregory KB, Lovley DR. Remediation and recovery of uranium from contaminated subsurface environments with electrodes [J]. Environ Sci Technol, 2005, 39 (22): 8943-8947
27 Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, Snoeyenbos-West OL, Lovley DR. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms [J]. Appl Environ Microb, 2011, 77 (9): 2882-2886
28 Schiel-Bengelsdorf B, Dürre P. Pathway engineering and synthetic biology using acetogens [J]. Febs Lett, 2012, 586 (15): 2191-2198
29 Steinbusch KJ, Hamelers HV, Plugge CM, Buisman CJ. Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass [J]. Energ Environ Sci, 2011, 4 (1): 216-224
28 Zhang T, Nie H, Bain TS, Lu H, Cui M, Snoeyenbos-West OL, Franks AE, Nevin KP, Russell TP, Lovley DR. Improved cathode materials for microbial electrosynthesis [J]. Energy Environ Sci, 2012, 6 (1): 217-224

相似文献/References:

[1]苏敏,蒋永,张尧,等.生物电化学耦合H2还原CO2合成简单有机物[J].应用与环境生物学报,2013,19(05):827.[doi:10.3724/SP.J.1145.2013.00827]
 SU Min,JIANG Yong,ZHANG Yao,et al.Coupled Bioelectrochemical System for Reducing CO2 to Simple Organic Compounds in the Presence of H2[J].Chinese Journal of Applied & Environmental Biology,2013,19(02):827.[doi:10.3724/SP.J.1145.2013.00827]
[2]蒋永,苏敏,张尧,等.生物电化学系统还原二氧化碳同时合成甲烷和乙酸[J].应用与环境生物学报,2013,19(05):833.[doi:10.1088/1748-9326/5/3/034011]
 JIANG Yong,SU Min,ZHANG Yao,et al.Simultaneous Production of Methane and Acetate from Carbon Dioxide with Bioelectrochemical Systems[J].Chinese Journal of Applied & Environmental Biology,2013,19(02):833.[doi:10.1088/1748-9326/5/3/034011]
[3]唐家桓,刘毅,周顺桂,等.电活性生物膜:形成、表征及应用[J].应用与环境生物学报,2014,20(06):1096.[doi:10.3724/SP.J.1145.2014.03028]
 TANG Jiahuan,LIU Yi,ZHOU Shungui,et al.Electrochemically active biofilms: formation, characterization and application[J].Chinese Journal of Applied & Environmental Biology,2014,20(02):1096.[doi:10.3724/SP.J.1145.2014.03028]

备注/Memo

备注/Memo:
国家自然科学基金项目(31270166,51074149,31270531)资助
更新日期/Last Update: 2014-05-04