|本期目录/Table of Contents|

[1]李宇浩,靳艳玲,龙飞,等.降粘酶在新鲜木薯发酵生产高浓度乙醇中的应用[J].应用与环境生物学报,2013,19(03):501-505.[doi:10.3724/SP.J.1145.2013.00501]
 LI Yuhao,JIN Yanling,LONG Fei,et al.Using Viscosity Reducing Enzyme as Annexing Agent in the Very High Gravity Ethanol Fermentation with Fresh Cassava[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):501-505.[doi:10.3724/SP.J.1145.2013.00501]
点击复制

降粘酶在新鲜木薯发酵生产高浓度乙醇中的应用()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
19卷
期数:
2013年03期
页码:
501-505
栏目:
研究论文
出版日期:
2013-06-25

文章信息/Info

Title:
Using Viscosity Reducing Enzyme as Annexing Agent in the Very High Gravity Ethanol Fermentation with Fresh Cassava
作者:
李宇浩靳艳玲龙飞黄玉红方扬张国华赵云赵海
(1中国科学院成都生物研究所 成都 610041)
(2中国科学院大学 北京 100049)
(3中国科学院环境与应用微生物重点实验室 成都 610041)
(4四川大学生命科学学院 成都 610041)
Author(s):
LI YuhaoJIN YanlingLONG FeiHUANG YuhongFANG YangZHANG GuohuaZHAO YunZHAO Hai
(1Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China)
(2University of Chinese Academy of Sciences, Beijing 100049, China)
(3Key Laboratory of Environmental and Applied Microbiology of Chinese Academy of Sciences, Chengdu 610041, China)
(4College of Life Sciences, Sichuan University, Chengdu 610041, China)
关键词:
高浓度乙醇发酵新鲜木薯酿酒酵母降粘酶工艺优化
Keywords:
very high gravity ethanol fermentation cassava Saccharomyces cerevisiae viscosity reducing enzyme process optimization
分类号:
TQ920.6 : S533.099
DOI:
10.3724/SP.J.1145.2013.00501
摘要:
针对作物类块根在发酵中存在的高粘度传质问题,研究了降粘酶在酿酒酵母发酵非粮能源作物新鲜木薯生产高浓度乙醇中的作用,为木薯原料更好地应用于规模化燃料乙醇生产提供理论依据. 采用实验室优化后的降粘酶作用于液化后木薯发酵液,2 h后粘度由9×103 mPa.s降到4×102 mPa.s. 在发酵过程中降粘酶的添加使发酵底物粘度在2-4 h内降低至200 mPa.s,由半固体变为流体,极大地增加了发酵底物的流动性,显著降低了搅拌需消耗的能量. 结合降粘酶的前处理进一步开展了新鲜木薯高浓度乙醇发酵的研究. 结果表明优化后的最佳条件为:新鲜木薯发酵初始糖浓度为24%,降粘酶用量为1 g/kg,最佳氮源为尿素,氮元素添加量为总发酵醪液的0.06%. 发酵时间24 h,乙醇质量分数为115.57 g/kg,发酵效率达到91.92%,发酵强度为4.81 g kg-1 h-1. 在5 L发酵罐中,发酵效率达到90.16%,发酵强度4.78 g kg-1 h-1.
Abstract:
This research studied the high viscosity in ethanol production from cassava with Saccharomyces cerevisiae and the use of viscosity reducing enzyme as annexing agent. It provided theoretical basis for ethanol fermentation with cassava on industry scale. Viscosity reducing enzymes optimized in our lab was used for pretreatment, which was followed by adding starch hydrolyzing enzymes in fermentation. Two hours later, the viscosity was reduced from 9×103 mPa.s to 4×102 mPa.s. In the fermentation process, the viscosity reducing enzymes decreased the viscosity to as low as 200 mPa.s in 2-4 hours, significantly increasing the liquidity of the cassava mash, which saved more energy in churning. The study of very high gravity (VHG) ethanol fermentation by S. cerevisiae found the following optimal conditions for VHG fermentation: the total sugar in the cassava root as 24%; viscosity reducing enzyme dosage as 1 g/kg; the best nitrogen source as carbamide when using the simultaneous saccharification and fermentation process; and the dosage of N as 0.06% of the total fermentation mash. Accordingly, the final ethanol concentration was up to 115.57 g/kg, with the ethanol efficiency 91.92% and ethanol productivity 4.81 g kg-1 h-1 after 24 h. When the fermentation scale was expanded to 5 L, and the ethanol productivity was 4.78 g kg-1 h-1.

参考文献/References:

1 薛万伟, 党选举, 李鑫. 木薯酒精发酵工艺的研究[J]. 酿酒, 2005, 32 (4): 56-60 [Xue WW, Dang XJ, Li X. Study on the technology of cassava ethanol fermentation [J]. Liquor Making, 2005, 32 (4): 56-60]
2 Adeniyi OD, Kove AS, Abdulkareem AS, Chukwudozie C. Ethanol fuel production from cassava as a substitute for gasoline [J]. J Dispersion Sci Technol, 2007, 28: 501-504
3 Wang D, Bean S, McLaren J, Seib P, Madl R, Tuinstra M, Shi Y, Lenz M, Wu X, Zhao R. Grain sorghum is a viable feedstock for ethanol production [J]. J Ind Microbiol Biotechnol, 2008, 35 (5): 313-320
4 Ingledew WM, Thomas KC, Hynes SH, McLeod JG. Viscosity concerns with rye mashes used for ethanol production [J]. Cereal Chem, 1999, 76 (3): 459-464
5 Zhang L, Chen Q, Jin YL, Xue HL, Guan JF, Wang ZY, Zhao H. Energy-saving direct ethanol production from viscosity reduction mash of sweet potato at very high gravity (VHG) [J]. Fuel Process Technol, 2010, 91 (12): 1845-1850
6 Maldonado MC, Strasser de Saad AM. Production of pectinesterase and polygalacturonase by Aspergillus niger in submerged and solid state systems [J]. Ind Microbiol Biotechnol, 1998, 20 (1): 3438
7 Zaidul ISM, Norulain NAN, Omar AKM, Yamauchi H, Noda T. RVA analysis of mixtures of wheat flour and potato, sweet potato, yam, and cassava starches [J]. Carbohyde Polym, 2007, 69 (4): 784-791
8 伍彦华, 张家伟, 韩宏明, 盘柳萍. 木薯酒精发酵废液回用的工艺技术探[J]. 广西轻工, 2010 (5): 36-38
9 Mendes-Ferreira A, del Olmo M, García-Martínez J, Jiménez-Martí E, Leão C, Mendes-Faia1 A, Pérez-Ortín JE. Saccharomyces cerevisiae signature genes for predicting nitrogen deficiency during alcoholic fermentation [J]. Appl Environ Microbiol, 2007, 73 (16): 5363-5369
10 Jones AM, Ingledew WM. Fuel alcohol production: optimization of temperature for efficient very high gravity fermentation [J]. Appl Environ Microbiol, 1994, 60 (3): 1048-1051

备注/Memo

备注/Memo:
国家科技支撑计划项目(2011BAD22B03)、中国科学院知识创新工程重要方向项目(KSCX2-EW-J-22,KSCX2-EW-G-1-1)和现代农业产业技术体系项目(CARS-11-A-04)资助
更新日期/Last Update: 2013-06-20