|本期目录/Table of Contents|

 HU Rong,ZHANG Shu,WU Jianwei,et al.Detection of Cellulases and the Relationship Between Enzyme Activity and Development of Musca domestica[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):444-448.[doi:10.3724/SP.J.1145.2013.00444]





Detection of Cellulases and the Relationship Between Enzyme Activity and Development of Musca domestica
(贵阳医学院基础医学院 贵阳 550004)
HU RongZHANG ShuWU JianweiGUO GuoFU Ping
(School of Basic Medical Sciences, Guiyang Medical College, Guiyang 550004, China)
cellulase β-glucosidase endo-β-14 glucanase exo-β-14-glucanase enzyme activity development Musca domestica
为了解家蝇能否降解利用纤维素,采用DNSA法检测家蝇幼虫纤维素酶活性及酶学特性;并进一步研究纤维素酶活性与家蝇发育的关系. 结果显示,在生长发育的不同时期,家蝇都具有滤纸酶活性,活性范围为0.85 (± 0.035) IU mg-1至10.45 (± 0.050) IU mg-1;家蝇纤维素酶的组成包含3种酶,即β-葡萄糖苷酶(β-glucosidase,BG)、内切β-1,4-葡聚糖酶(Endo-β-1,4 glucanase,EG)和外切β-1,4-葡聚糖酶(Exo-β-1,4-glucanase,CBH). 在pH 5.6的条件下,这3种酶的最适反应温度和时间分别为50 ℃和60 min,在体外具有较强的热稳定性,50 ℃放置1 h后仍可保持较强的酶活性. 纤维素酶活性随着家蝇的发育逐渐增高(P < 0.05),卵的酶活性最低, 成虫的酶活性最高,在最适反应条件下,成虫BG、EG和CBH的活性分别为(7.96 ± 0.065) IU mg-1、(9.76 ± 0.080) IU mg-1和(10.86 ± 0.091) IU mg-1. 这3种酶的活性在家蝇卵、幼虫、蛹和成虫4个发育阶段,均是CBH最高,BG最低. 增加家蝇幼虫饲料中粗纤维的含量,3龄幼虫的纤维素酶活性明显提高(P < 0.05),而平均体重和体长与对照组比无显著差异(P > 0.05). 研究表明家蝇具有完整的降解利用植物纤维素的酶系,其纤维素酶活水平与家蝇的发育密切相关.
For understanding whether or not Musca domestica has an ability to hydrolyze cellulose, the activities and characteristics of cellulases from M. domestica were examined with the 3,5-dinitrosalicylic acid (DNSA) method. Then the composition and activity change of M. domestica cellulases were investigated during its development. The results showed that M. domestica in the different developmental stages had the filter paper enzyme activity, the activity-range being 0.85 (± 0.035) IU mg-1 to 10.45 (± 0.050) IU mg-1. The cellulase components included β-glucosidase (BG), endo-β-1,4 glucanase (EG) and exo-β-1,4-glucanase (CBH), which were detected with the special substrate of 1% salicin, 1% carboxymethylcellulose (CMC) and 1% microcrystalline cellulose (MCC), respectively. Under the condition of pH 5.6, for the three enzymes, the optimum reaction temperature and time were 50 ℃ and 60 min. They had good heat stability in vitro when being kept in 50 ℃ for 1 hour. Activity of the cellulases increased gradually with its development (P < 0.05). The lowest enzyme activity showed in the ovule stage and the highest enzymatic activity in the imago stage. At the optimum reaction condition, the activities of BG, EG and CBH were 7.96 (± 0.065) IU mg-1, 9.76 (± 0.080) IU mg-1 and 10.86 (± 0.091) IU mg-1 respectively. The CBH activity was the highest, and the BG the lowest in M. domestica life cycle. With increasing crude fiber in the forage of M. domestica larvae, cellulase activity of the third instar larvae was also increased (P < 0.05), without a significant deviation of mean weight and stem length of the third instar larvae compared to the control group (P > 0.05). The results suggested a complete enzyme system of cellulases in M. domestica and a close relationship between the enzyme activity level and the development of M. domestica.


1 Watanabe H, Tokuda G. Cellulolytic systems in insects [J]. Annu Rev Entomol, 2010, 55: 609-632
2 Kumar R, Singh S, Singh OV. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives [J]. J Ind Microbiol Biotechnol, 2008, 35 (5): 377-391
3 Oppert C, Klingeman WE, Willis JD, Oppert B, Jurat-Fuentes JL. Prospecting for cellulolytic activity in insect digestive fluids [J]. Comp Biochem Physiol B Biochem Mol Biol, 2010, 155 (2): 145-154
4 Tokuda G, Watanabe H, Hojo M, Fujita A, Makiya H, Miyagi M, Arakawa G, Arioka M. Cellulolytic environment in the midgut of the wood-feeding higher termite Nasutitermes takasagoensis [J]. J Insect Physiol, 2012, 58 (1): 147-154
5 Lo N, Tokuda G, Watanabe H. Biology of Termites: A Modern Synthesis. Chapter 3: Evolution and Function of Endogenous Termite Cellulases [M]. Netherlands: Springer, 2011. 51-67
6 许利霞, 徐荣, 赵焕玉, 杨红. 黑胸散白蚁纤维素酶的体外酶学特性[J]. 应用与环境生物学报, 2012, 18 (1): 70-74 [Xu LX, Xu R, Zhao HY, Yang H. In vitro characteristics of the cellulases from Reticulitermes chinensis Snyder [J]. Chin J Appl Environ Biol, 2012, 18 (1): 70-74]
7 Jonathan D. Willis. Identification and characterization of novel cellulases from Dissosteira carolina (Orthoptera: Acrididae) and molecular cloning and expression of an endo-beta-1,4-glucanase from Tribolium castaneum (Coleoptera: Tenebrionidae) [D]. Knoxville: The University of Tennessee, 2009
8 Yapi DYA, Gnakri D, Niamke SL, Kouame LP. Purification and biochemical characterization of a specific β-glucosidase from the digestive fluid of larvae of the palm weevil, Rhynchophorus palmarum [J]. J Insect Sci, 2009, 9 (4): 1-13
9 Kim N, Choo YM, Lee KS, Hong SJ, Seol KY, Je YH, Sohn HD, Jin BR. Molecular cloning and characterization of a glycosyl hydrolase family 9 cellulase distributed throughout the digestive tract of the cricket Teleogryllus emma [J]. Comp Biochem Physiol B Biochem Mol Biol, 2008, 150 (4): 368-376
10 Sami AJ, Anwar MA, Rehman FU, Shakoori AR. Digestive cellulose hydrolyzing enzyme activity (endo-β-1,4-d-glucanase) in the gut and salivary glands of blister beetle, Mylabris pustulata [J]. Pakistan J Zool, 2011, 43 (2): 393-401
11 Willis JD, Oppert C, Jurat-Fuentes JL. Methods for discovery and characterization of cellulolytic enzymes from insects [J]. Insect Sci, 2010, 17: 84-198
12 Ghose TK. Measurement of cellulase activities. Pure Appl Chem, 1987, 59 (2): 257-268
13 谢天文, 袁月祥, 闫志英, 刘晓风, 贺蓉娜, 廖银章. 一株嗜酸性产纤维素酶真菌的特性及产酶条件优化[J]. 应用与环境生物学报, 2010, 16 ( 6): 863-869 [Xie TW, Yuan YX, Yan ZY, Liu XF, He RN, Liao YZ. Characteristics of an acidophilic cellulase-producing fungus and optimization of its fermentation condition[J]. Chin J Appl Environ Biol, 2010, 16 (6): 863-869]
14 韩铭, 袁月祥, 闫志英, 贺蓉娜, 刘晓风, 廖银章. 一株产耐热纤维素酶菌株的筛选及酶学性质[J]. 应用与环境生物学报, 2012, 18 (1): 75-79 [Han M, Yuan YX, Yan ZY, He RN, Liu XF, Liao YZ. Screening of a thermostable cellulase-producing strain and its enzymatic properties [J]. Chin J Appl Environ Biol, 2012, 18 (1): 75-79]
15 Willis JD, Klingeman WE, Oppert C, Oppert B, Jurat-Fuentes JL. Characterization of cellulolytic activity from digestive fluids of Dissosteira carolina (Orthoptera: Acrididae) [J]. Comp Biochem Physiol B Biochem Mol Biol, 2010, 157 (3): 267-272
16 Chang CJ, Wu CP, Lu SC, Chao AL, Ho TH, Yu SM, Chao YC. A novel exo-cellulase from white spotted longhorn beetle (Anoplophora malasiaca) [J]. Insect Biochem Mol Biol, 2012, 42 (9): 629-636
17 Chundawat SP, Balan V, Dale BE. High-throughput microplate technique for enzymatic hydrolysis of lignocellulosic biomass [J]. Biotechnol Bioeng, 2008, 99 (6): 1281-1294
18 黄祥财. 黄粉虫(Tenebrio molitor L.)纤维素酶研究[D]. 福州: 福建师范大学, 2008 [Huang XC. Study on the character of cellulase in T. molitor L. [D]. Fuzhou: Fujian Normal University, 2008]
19 陈春润. 黑翅土白蚁体内纤维素酶编码基因的克隆与表达[D]. 杭州: 浙江大学, 2010 [Chen CR. Cloning and expression of endogenouse cellulase genes from Odontotermes formosanus (IsoPtera: Termitidae) [D]. Hangzhou: Zhejiang University, 2010]


 QIU Dongliang,et al..Effects of simulated acid rain on cellulase activity and contents of endogenous hormone in young fruit of longan[J].Chinese Journal of Applied & Environmental Biology,2004,10(03):35.
 YANG Ge,CHEN Hongzhang,LIU Yan.Effect of Additives on Thermostability of Trichoderma viride JQF-04 Cellulase[J].Chinese Journal of Applied & Environmental Biology,2009,15(03):134.[doi:10.3724/SP.J.1145.2009.00134]
 TANG Defang,PEI Xiaoqiong,LI Xiaolu,et al.Screening, Cloning and Expression of Aspergillus niger β-glucosidase[J].Chinese Journal of Applied & Environmental Biology,2009,15(03):423.[doi:10.3724/SP.J.1145.2009.00423]
 ZHANG Yabo,LIU Lianmeng,XU Rongyan,et al.Expression of Thermoascus aurantiacus var. levisporus Endo-β-glucanase I Gene in Pichia pastoris and Anylysis of Enzymic Properties[J].Chinese Journal of Applied & Environmental Biology,2009,15(03):419.[doi:10.3724/SP.J.1145.2009.00419]
 WEI Yanhong,XIONG Ying,YUAN Yongze,et al.Screening and Identification of a Cellulase-producing Fungus and Optimization of Its Fermentation Conditions[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):274.[doi:10.3724/SP.J.1145.2010.00274]
 XIE Tianwen,LIU Xiaofeng,YUAN Yuexiang,et al.Progress in Research of Inducers and Regulation Mechanism of Fungal Cellulase[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):440.[doi:10.3724/SP.J.1145.2010.00440]
 XIE Tianwen,YUAN Yuexiang,YAN Zhiying,et al.Characteristics of an Acidophilic Cellulase-producing Fungus and Optimization of Its Fermentation Condition[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):863.[doi:10.3724/SP.J.1145.2010.00863]
 HUANG Yuhong,JIN Yanling,ZHAO Yun,et al.Viscosity Reduction During Fuel Ethanol Production by Fresh Sweet Potato Fermentation[J].Chinese Journal of Applied & Environmental Biology,2012,18(03):661.[doi:10.3724/SP.J.1145.2012.00661]
 GONG Zhiting,LAI Yonghong,ZHOU Yanmei,et al.Diversity of Cellulose-producing Thermophilic Bacteria in the Baoshan Hot Spring[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):699.[doi:10.3724/SP.J.1145.2013.00699]
 HUANG Yuhong,JIN Yanling,FANG Yang,et al.Application and Progress of Plant Cell Wall Polysaccharide Hydrolase in Non-food Based Biomass Conversation[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):881.[doi:10.3724/SP.J.1145.2013.00881]
 XU Lixia,XU Rong,ZHAO Huanyu,et al.In vitro Characteristics of the Cellulases from Reticulitermes chinensis Snyder[J].Chinese Journal of Applied & Environmental Biology,2012,18(03):70.[doi:10.3724/SP.J.1145.2012.00070]


更新日期/Last Update: 2013-06-20