|本期目录/Table of Contents|

[1]Klaus J. Appenroth,Nikolai Borisjuk,Eric Lam.Telling Duckweed Apart: Genotyping Technologies for the Lemnaceae[J].应用与环境生物学报,2013,19(01):1-10.[doi:10.3724/SP.J.1145.2013.00001]
 Klaus J. Appenroth,Nikolai Borisjuk,Eric Lam.Telling Duckweed Apart: Genotyping Technologies for the Lemnaceae[J].Chinese Journal of Applied & Environmental Biology,2013,19(01):1-10.[doi:10.3724/SP.J.1145.2013.00001]
点击复制

Telling Duckweed Apart: Genotyping Technologies for the Lemnaceae()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
19卷
期数:
2013年01期
页码:
1-10
栏目:
综述
出版日期:
2013-02-25

文章信息/Info

Title:
Telling Duckweed Apart: Genotyping Technologies for the Lemnaceae
作者:
Klaus J. Appenroth Nikolai Borisjuk Eric Lam
(1University of Jena, Institute of General Botany and Plant Physiology, Jena 07743, Germany)
(2Plant Biology and Pathology, Rutgers State University of New Brunswick, NJ 08901, USA)
Author(s):
Klaus J. Appenroth Nikolai Borisjuk Eric Lam
(1University of Jena, Institute of General Botany and Plant Physiology, Jena 07743, Germany)
(2Plant Biology and Pathology, Rutgers State University of New Brunswick, NJ 08901, USA)
关键词:
duckweed genotyping RAPD ISSR AFLP barcoding
Keywords:
duckweed genotyping RAPD ISSR AFLP barcoding
DOI:
10.3724/SP.J.1145.2013.00001
文献标志码:
A
摘要:
The family of Lemnaceae, commonly called duckweed, comprise five genera and 37 species of aquatic monocotyledonous plants that are endemic to lakes, ponds and brackish water bodies on most continents. They are angiosperms that have the highest biomass production rate and have been used to remediate wastewater from both municipal and industrial sources. With these attractive features, duckweed is poised to be a novel agricultural platform that can complement current terrestrial crops. In addition, their remarkable ability to adapt to diverse climates and conditions may provide new understanding of stress tolerance and genome adaptability mechanisms. However, one of the first challenges facing these applications is to establish reliable and rapid methods for identification of closely related strains that may have very different behaviour or properties. This review article summarizes the state of the arts for this endeavour and provides the outlook for this quest in the near future.
Abstract:
The family of Lemnaceae, commonly called duckweed, comprise five genera and 37 species of aquatic monocotyledonous plants that are endemic to lakes, ponds and brackish water bodies on most continents. They are angiosperms that have the highest biomass production rate and have been used to remediate wastewater from both municipal and industrial sources. With these attractive features, duckweed is poised to be a novel agricultural platform that can complement current terrestrial crops. In addition, their remarkable ability to adapt to diverse climates and conditions may provide new understanding of stress tolerance and genome adaptability mechanisms. However, one of the first challenges facing these applications is to establish reliable and rapid methods for identification of closely related strains that may have very different behaviour or properties. This review article summarizes the state of the arts for this endeavour and provides the outlook for this quest in the near future.

参考文献/References:

1 Landolt E. The Family of Lemnaceae - A Monographic Study. Vol. 1, Biosystematic Investigations in the Family of Duckweeds (Lemnaceae) [M]. Veröffentlichungen des Geobotanischen Institutes der ETH, Stiftung Rübel, Zürich, 1986
2 Landolt E, Kandeler R. The Family of Lemnaceae - A Monographic Study. Vol. 4, Biosystematic Investigations in the Family of Duckweeds (Lemnaceae) [M]. Veröffentlichungen des Geobotanischen Institutes der ETH, Stiftung Rübel, Zürich, 1987
3 Hillman WS. The Lemnaceae, or duckweeds: a review of the descriptive and experimental literature [J]. Bot Rev, 1961, 27: 221-287
4 Pieterse AH. Is flowering in Lemnaceae stress-induced? A review [J]. Aquat Bot, 2013, 104: 1-4
5 Lemon GD, Posluszny U. Comparative shoot development and evolution in the Lemnaceae [J]. Intern J Plant Sci, 2000, 161: 733-748
6 Lemon GD, Posluszny U, Husband BC. Potential and realized rates of vegetative reproduction in Spirodela polyrhiza, Lemna minor, and Wolffia borealis [J]. Aquat Bot, 2001, 70: 79-87
7 Qian C, Jin Y, Zhang G, Fang Y, Xiao Y, Zhao H. Improving production of bioethanol from duckweed (Landoltia punctata) by pectinase pretreatment [J]. Energies, 2012, 5: 3019-3032
8 Xu J, Cheng JJ, Stomp AM. Growing Spirodela polyrhiza in swine wastewater for the production of animal feed and fuel ethanol: a pilot study [J]. Clean – Soil Air Water, 2012, 40: 760-765
9 Zhao H, Appenroth KJ, Landesman L, Salmean AA, Lam E. Duckweed rising at Chengdu: summary of the 1st international conference on duckweed application and research [J]. Plant Mol Biol, 2012, 78: 627-632
10 Leng RA, Stambolie JH, Bell R. Duckweed - a potential high-protein feed resource for domestic animals and fish [J]. Livestock Res Rural Dev, 1995, 7 (1)
11 Anderson KE, Lowman Z, Stomp AM, Chang J. Duckweed as a feed ingredient in Laying Hen Diets and its effect on egg production and composition [J]. Intern J Poultry Sci, 2011, 10: 4-7
12 Landesman L, Fedler C, Duan R. Plant nutrient phytoremediation using duckweeds [A]. In: Ansari AA, Gill SS, Lanza GR, Rast W eds. Eutrophication: Causes, Consequences and Control, Chapter 17 [M]. Beilin: Springer-Verlag, 2011
13 Appenroth KJ, Stoeckel J, Srivastava A, Strasser RJ. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by direct, time-resolved chlorophyll a fluorescence measurements [J]. Environ Pollut, 2001, 115: 49-64
14 Naumann B, Eberius M, Appenroth KJ. Growth rate based dose-response relationships and EC-values of ten heavy metals using the duckweed growth inhibition test (ISO 20079) with Lemna minor L. clone St. [J]. J Plant Physiol, 2007, 164: 1656-1664
15 Bog M, Schneider P, Hellwig F, Sachse S, Kochieva EZ, Martyrosian E, Landolt E, Appenroth KJ. Genetic characterization and barcoding of taxa in the genus Wolffia Horkel ex Schleid. (Lemnaceae) as revealed by two plastidic markers and amplified fragment length polymorphism (AFLP) [J]. Planta, 2013, 237: 1-13
16 Hegelmaier F. Die Lemnaceen. Eine Monographische Untersuchung [M]. Leipzig: Verlag Wilhelm Engelmann, 1868
17 Daubs EH. A monography of Lemnaceae [A]. Illinois Biological Monographs 34 [M]. Urbana: The University of Illinois, 1965
18 Hartog CD, Van Der Plas F. A synopsis of the Lemnaceae [J]. Blumea, 1970, 18: 355-368
19 Landolt E. Key to the Determination of Taxa within the Family of Lemnaceae [M]. Veröffentlichungen des Geobotanischen Institutes der ETH, Stiftung Rübel, Zürich, 1980, 70: 13-21
20 Les D, Landolt E, Crawford DJ. Systematics of Lemnaceae: inferences from micromolecular and morphological data [J]. Plant Syst Evol, 1997, 204: 161-177
21 Les D, Crawford DJ. Landoltia (Lemnaceae) a new genus of duckweeds [J]. Novon, 1999, 9: 530-533
22 McClure JE, Alston WRE. A chemotaxonomic study of Lemnaceae [J]. Am J Bot, 1966, 53: 849-860
23 Crawford DJ, Landolt E. Allozyme studies in Spirodela (Lemnaceae): variation among conspecific clones and divergence among the species [J]. Syst Bot, 1993,18: 389-394
24 Crawford DJ, Landolt E, Les DH. An allozyme study of two sibling species of Lemna (Lemnaceae) with comments on their morphology, ecology, and distribution [J]. Bull Torrey Bot Club, 1996, 123: 1-6
25 French J, Chung CMG, HUR YK. Chloroplast DNA phylogeny of the Ariflorae [A]. In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ eds. Monocotyledons: Systematics and Evolution, Vol. 1 [M]. Kew: Royal Botanic Gardens, 1995. 255-275
26 Nauheimer L, Metzler D, Renner SS. Global history of the ancient monocot family Araceae inferred with models accounting for past continental positions and previous ranges based on fossils [J]. New Phytol, 2012, 195: 938-950
27 Les DH, Crawford DJ, Landolt E, Gabel JD, Kimball RT. Phylogeny and systematics of Lemnaceae, the duckweed family [J]. Syst Bot, 2002, 27: 221-240
28 Cabrera LI, Salazar GA, Chase MW, Mayo SJ, Bogner J, Davila P. Phylogenetic relationships of Aroids and duckweeds (Araceae) inferred from coding and noncoding plastid DNA [J]. Am J Bot, 2008, 95: 1153-1165
29 Cusimano N, Bogner J, Mayo SJ, Boyce PC, Wong SY, Hesse M, Hetterscheid WLA, Keating RC, French JC. Relationships within the Araceae: comparison of morphological patterns with molecular phylogeny [J]. Am J Bot, 2011, 98: 654-668
30 Dyer TA, Bowman CM. Nucleotide sequences of chloroplast 5S ribosomal ribonucleic acid in flowering plants [J]. Biochem J, 1979, 183: 595-604
31 van Ee JH, Vos YJ, Planta RJ. Physical map of chloroplast DNA of Spirodela oligorrhiza; analysis by the restriction endonucleases PstI, XboI and SacI [J]. Gene, 1980, 12: 191-200
32 Tobin EM. White light effects on the mRNA for the light-harvesting chlorophyll a/b-protein in Lemna gibba L. G3 [J]. Plant Physiol, 1981, 67: 1078-1083
33 Jordan WC, Courtney MW, Neigel JE. Low levels of intraspecific genetic variation at a rapid evolving chloroplast DNA locus in North American duckweeds (Lemnaceae) [J]. Am J Bot, 1996, 83: 430-439
34 Martyrosian EV, Ryzhova NN, Skryabin KG, Kochieva EZ. RAPD analysis of genome polymorphism in the family Lemnaceae [J]. Russ J Genet, 2008, 44: 360-364
35 Xue H, Xiao Y, Jin Y, Li X, Fang Y, Zhao H, Zhao Y, Guan J. Genetic diversity and geographic differentiation analysis of duckweed using inter-simple sequence repeat markers [J]. Mol Biol Rep, 2012, 39: 547-554
36 Bog M, Baumbach H, Schween U, Hellwig F, Landolt E, Appenroth KJ. Genetic structure of the genus Lemna L. (Lemnaceae) as revealed by amplified fragment length polymorphism [J]. Planta, 2010, 232: 609-619
37 Kandeler R. Species delimitation in the genus Lemna [J]. Aquat Bot, 1975, 1: 365-376
38 Meyer CP, Paulay G. DNA barcoding: error rates based on comprehensive sampling [J]. PLoS Biol, 2005, 3 (12): e422
39 Hebert PDN, Cywinska A, Ball SL, DeWaard JR. Biological identifications through DNA barcodes [J]. Proc R Soc Lond B: Biol Sci, 2003, 270: 313-321
40 Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH. Use of DNA barcodes to identify flowering plants [J]. Proc Natl Acad Sci USA, 2005, 102: 8369-8374
41 Rothwell GW, van Atta MR, Ballard HE, Stockey RA. Molecular phylogenetic relationships among Lemnaceae and Araceae using the chloroplast trnL-trnF intergenic spacer [J]. Mol Phylogenet Evol, 2004, 30: 378-385
42 Martyrosian EV, Ryzhova NN, Kochieva EZ, Skryabin KG. Analysis of chloroplast rpS16 intron sequences in Lemnaceae [J]. Mol Biol, 2009, 43: 32-38
43 CBOL Plant Working Group. A DNA barcode for land plants [J]. Proc Natl Acad Sci USA, 2009, 106:12794-12797
44 Hollingsworth ML, Clark AA, Forrest LL, Richardson J, Pennington RT, Long DG, Cowan R, Chase MW, Gaudeul M, Hollingsworth PM. Selecting barcoding loci for plants: evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants [J]. Mol Ecol Resour, 2009, 9: 439-457
45 Wang W, Wu Y, Yan Y, Ermakova M, Kerstetter R, Messing J. DNA barcoding of the Lemnaceae, a family of aquatic monocots [J]. BMC Plant Biol, 2010, 10: 205
46 Lahaye RRY, Savolainen V, Duthoit S, Maurin O, van der Bank M. A test of psbK-psbI and atpF-atpH as potential plant DNA barcodes using the flora of the Kruger National Park (South Africa) as a model system [J]. Nat Precedings, 2008. http://hdl.handle.net/10101/ npre.2008.1896.1
47 Zhang N, Zeng L, Shan H, Ma H. Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms [J]. New Phytol, 2012, 195: 923-937
48 Chen S, Yao H, Han J, Liu C, Song J, Shi L, Zhu Y, Ma X, Gao T, Pang X, Luo K, Li Y, Li X, Jia X, Lin Y, Leon C. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species [J]. PLoS One, 2010, 5 (1): e8613
49 Yao H, Song J, Liu C, Luo K, Han J, Li Y, Pang X, Xu H, Zhu Y, Xiao P, Chen S. Use of ITS2 region as the universal DNA barcode for plants and animals [J]. PLoS One, 2010, 5 (10): e13102
50 China Plant BOL Group, Li DZ, Gao LM, Li HT, Wang H, Ge XJ, Liu JQ, Chen ZD,Zhou SL, Chen SL, Yang JB, Fu CX, Zeng CX, Yan HF, Zhu YJ, Sun YS, Chen SY, Zhao L, Wang K, Yang T, Duan GW. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants [J]. Proc Natl Acad Sci USA, 2011, 108 (49): 19641-19646
51 Mardanov AV, Ravin NV, Kuznetsov BB, Samigullin TH, Antonov AS, Kolganova TV, Skyabin KG. Complete sequence of the duckweeds (Lemna minor) chloroplast genome: structural organization and phylogenetic relationships to other angiosperms [J]. J Mol Evol, 2008, 66: 555-564
52 Wang W, Messing J. High-throughput sequencing of three Lemnoideae (duckweeds) chloroplast genomes from total DNA [J]. PLoS One, 2011, 6 (9): e24670
53 Wang W, Wu Y, Messing J. The mitochondrial genome of an aquatic plant, Spirodela polyrhiza [J]. PLoS One, 2012, 7 (10): e46747

备注/Memo

备注/Memo:
For correspondence: Plant Biology & Pathology, Rutgers State University of New Jersey, Foran Hall, 59 Dudley Road, New Brunswick, NJ 08901; Fax: 732-932-4293; E-mail: Lam@aesop.rutgers.edu
更新日期/Last Update: 2013-02-26