|本期目录/Table of Contents|

 JIANG Yong,SU Min,ZHANG Yao,et al.Simultaneous Production of Methane and Acetate from Carbon Dioxide with Bioelectrochemical Systems[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):833-837.[doi:10.1088/1748-9326/5/3/034011]





Simultaneous Production of Methane and Acetate from Carbon Dioxide with Bioelectrochemical Systems
蒋永 苏敏 张尧 陶勇 李大平
(1 中国科学院成都生物研究所 成都 610064) (2四川大学生命科学学院 成都 610041) (3中国科学院大学 北京 100049)
JIANG Yong SU Min ZHANG Yao TAO Yong LI Daping
(1Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China) (2School of Life Sciences, Sichuan University, Chengdu 610064, China) (3University of Chinese Academy of Sciences, Beijing 100049, China)
bioelectrochemical systems biocathode carbon dioxide methane acetate
X172 : TM911.45
采用生物电化学系统还原二氧化碳合成有机物近年来已成为环境微生物学的研究热点。本研究构建了具有电活性微生物的生物电化学系统,混合菌群通过电极直接传递或电极电子转化为氢气两种方式获得电子,同时产生甲烷和乙酸。在设定阴极电势为-1 100 mV时,甲烷生成速率为17.3 mL h-1 L-1,乙酸生成速率为13.9 mg h-1 L-1,总库伦效率可达94.0%。生物阴极群落构成包括醋酸杆菌属(Acetobacterium)、甲烷杆菌属(Methanobacterium)和甲烷微粒菌属(Methanocorpusculum)等功能微生物。研究表明生物电化学系统中,基于混合菌构建的生物阴极可以将二氧化碳还原为多种有机物,并且其中微生物的电子获得方式也存在多样性。图 4 参 35
Reduction of CO2 to organics with bioelectrical systems has become a research area of environmental microbiology. This study constructed a bioelectrochemical system (BES) capable of reducing CO2 to CH4 and CH3COOH via abiotical H2 gas production and/or direct extracellular electron transfer. CH4 and CH3COOH were produced at rates of 17.3 mL h-1 L-1 and 13.9 mg h-1 L-1, respectively (at potential of -1 100 mV). The current capture efficiency reached 94.0% in batch potentiostatic experiments. Microbial characterization revealed that the microbial populations consisted of Methanobacterium palustre, Methanocorpusculum parvum, and acetogen Acetobacterium sp. These results suggested that mixed culture in BESs can convert CO2 into various organic compounds by accepting electrons in different ways. Fig 4, Ref 33


Rabaey K, Rodríguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH. Microbial ecology meets electrochemistry: electricity-driven and driving communities [J]. ISME J, 2007, 1 (1): 9-18 Liu H, Ramnarayanan R, Logan BE. Production of electricity during wastewater treatment using a single chamber microbial fuel cell [J]. Environ Sci Technol, 2004, 38 (7): 2281-2285 Gregory KB, Lovley DR. Remediation and recovery of uranium from contaminated subsurface environments with electrodes [J]. Environ Sci Technol, 2005, 39 (22): 8943-8947 Tandukar M, Huber SJ, Onodera T, Pavlostathis SG. Biological chromium(VI) reduction in the cathode of a microbial fuel cell [J]. Environ Sci Technol, 2009, 43 (21): 8159-8165 Li Y, Lu A, Ding H, Jin S, Yan Y, Wang C, Zena C, Wang X . Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells [J]. Electrochem Commun, 2009, 11 (7): 1496-1499 Huang L, Chai X, Chen G, Logan BE. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells [J]. Environ Sci Technol, 2011, 45 (11): 5025-5031 Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W. Biological denitrification in microbial fuel cells [J]. Environ Sci Technol, 2007, 41 (9): 3354-3360 Puig S, Serra M, Vilar-Sanz A, Cabre M, Baneras L, Colprim J, Balaguera MD. Autotrophic nitrite removal in the cathode of microbial fuel cells [J]. Bioresource Technol, 2011, 102 (6): 4462-4467 Zhan G, Zhang L, Li D, Su W, Tao Y, Qian J. Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell [J]. Bioresour Technol, 2012, 116: 271-277 Aulenta F, Canosa A, Reale P, Rossetti S, Panero S, Majone M. Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators [J]. Biotechnol Bioeng, 2009, 103 (1): 85-91 Aulenta F, Reale P, Canosa A, Rossetti S, Panero S, Majone M. Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethene [J]. Biosens Bioelectron, 2010, 25 (7): 1796-1802 Cheng S, Logan BE. Sustainable and efficient biohydrogen production via electrohydrogenesis [J]. Proc Natl Acad Sci, 2007, 104 (47): 18871-18873 Villano M, Monaco G, Aulenta F, Majone M. Electrochemically assisted methane production in a biofilm reactor [J]. J Power Sources, 2011, 196 (22): 9467-9472 Cheng S, Xing D, Call DF, Logan BE . Direct biological conversion of electrical current into methane by electromethanogenesis [J]. Environ Sci Technol, 2009, 43 (10): 3953-3958 Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture [J]. Bioresour Technol, 2010, 101 (9): 3085-3090 Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds [J]. mBio, 2010, 1 (2): e00103-00110 Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, Snoeyenbos-West OL, Lovley DR. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms [J]. Appl Environ Microbiol, 2011, 77 (9): 2882-2886 Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, Malati P, Huo YX, Cho KM, Liao JC. Integrated electromicrobial conversion of CO2 to higher alcohols [J]. Science, 2012, 335 (6076): 1596-1596 K?pke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Lieb W, Gottschalk G, Dürre P. Clostridium ljungdahlii represents a microbial production platform based on syngas [J]. Proc Nat Acad Sci, 2010, 107 (29): 13087-13092 Rabaey K, Rozendal RA. Microbial electrosynthesis — revisiting the electrical route for microbial production [J]. Nat Rev Microbiol, 2010, 8 (10): 706-716 Rabaey K, Girguis P, Nielsen LK. Metabolic and practical considerations on microbial electrosynthesis [J]. Curr Opin Biotechnol, 2011, 22 (3): 371-377 Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreiber A, Müller TE. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2 [J]. Energy Environ Sci, 2012, 5 (6): 7281-7305 Mossa AR, Jouanyb JP, Newbold J. Methane production by ruminants: its contribution to global warming [J]. Ann Zootech, 2000, 49 (3): 231-253 Breznak JA, Kane MD. Microbial H2/CO2 acetogenesis in animal guts: nature and nutritional significance [J]. FEMS Microbiol Rev, 1990, 7 (3-4): 309-313 Su W, Zhang L, Li D, Zhan G, Qian J, Tao Y. Dissimilatory nitrate reduction by Pseudomonas alcaliphila with an electrode as the sole electron donor [J]. Biotechnol Bioeng, 2012, 109 (11): 2904-2910 Muyzer G, Dewaal EC, Uitterlinden AG. Profiling of complex microbial-populations by denaturing gradient gel-electrophoresis analysis of polymerarse chain reaction-amplified genes-coding for 16S ribosomal-RNA [J]. Appl Environ Microbiol. 1993, 59 (3): 695-700 Zhao HZ, Zhang Y, Chang YY, Li ZS. Conversion of a substrate carbon source to formic acid for carbon dioxide emission reduction utilizing series-stacked microbial fuel cells [J]. J Power Sources, 2012, 217: 59-64 Zhao H, Zhang Y, Zhao B, Chang Y, Li Z. Electrochemical reduction of carbon dioxide in an MFC–MEC system with a layer-by-layer self-assembly carbon nanotube/cobalt phthalocyanine modified electrode [J]. Environ Sci Technol, 2012, 46 (9): 5198-5204 Gillett NP, Matthews HD. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases [J]. Environ Res Lett, 2010, 5 (3), doi:10.1088/1748-9326/5/3/034011 Sparling R, Daniels L. The specificity of growth-inhibition of methanogenic bacteria gy bromoethanesulfonate [J]. Can J Microbiol, 1987. 33 (12): 1132-1136 Tugtas AE, Pavlostathis SG. Effect of sulfide on nitrate reduction in mixed methanogenic cultures [J]. Biotechnol Bioeng, 2007, 97 (6): 1448-1459 Tugtas AE, Pavlostathis SG. Electron donor effect on nitrate reduction pathway and kinetics in a mixed methanogenic culture [J]. Biotechnol Bioeng, 2007, 98 (4): 756-763 郭静, 徐自祥, 付亚星, 刘碧芸, 孟静, 肖可, 付德刚, 孙啸. 产电微生物基因组及代谢网络分析[J]. 应用与环境生物学报, 2012, 18 (6): 1075-1084 [Guo J, Xu ZX, Fu YX, Liu BY, Meng J, Xiao K, Fu DG, Sun X. Analysis on electricigen genomes and metabolic networks [J]. Chin J Appl Environ Biol, 2012, 18 (6): 1075-1084] Rotaru A-E, Shrestha PM, Liu F, Ueki T, Nevin K, Summers ZM, Lovley DR. Interspecies electron transfer via hydrogen and formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens [J]. Appl Environ Microbiol, 2012, 78 (21): 7645-7651 Zhang T, Nie H, Bain TS, Lu H, Cui M, Snoeyenbos-West OL, Franks AE, Nevin KP, Russell TP, Lovley DR. Improved cathode materials for microbial electrosynthesis [J]. Energy Environ Sci, 2013, 6 (1): 217-224


 SU Min,JIANG Yong,ZHANG Yao,et al.Coupled Bioelectrochemical System for Reducing CO2 to Simple Organic Compounds in the Presence of H2[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):827.[doi:10.3724/SP.J.1145.2013.00827]
 ZHANG Yao,ZHANG Wenjie,JIANG Yong,et al.Simultaneous microbial electrosynthesis of acetate and butyrate from carbon dioxide in bioelectrochemical systems[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):174.[doi:10.3724/SP.J.1145.2014.00174]
 TANG Jiahuan,LIU Yi,ZHOU Shungui,et al.Electrochemically active biofilms: formation, characterization and application[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):1096.[doi:10.3724/SP.J.1145.2014.03028]


收稿日期 Received: 2012-12-27 接受日期 Accepted: 2013-02-28*国家自然科学基金项目(31270166, 51074149)资助 Supported by the National Natural Science Foundation of China (Nos. 31270166, 51074149)
更新日期/Last Update: 2013-10-28