|本期目录/Table of Contents|

[1]苏敏,蒋永,张尧,等.生物电化学耦合H2还原CO2合成简单有机物[J].应用与环境生物学报,2013,19(05):827-832.[doi:10.3724/SP.J.1145.2013.00827]
 SU Min,JIANG Yong,ZHANG Yao,et al.Coupled Bioelectrochemical System for Reducing CO2 to Simple Organic Compounds in the Presence of H2[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):827-832.[doi:10.3724/SP.J.1145.2013.00827]
点击复制

生物电化学耦合H2还原CO2合成简单有机物()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
19卷
期数:
2013年05期
页码:
827-832
栏目:
研究论文
出版日期:
2013-10-25

文章信息/Info

Title:
Coupled Bioelectrochemical System for Reducing CO2 to Simple Organic Compounds in the Presence of H2
作者:
苏敏蒋永张尧高平李大平
(1 四川大学生命科学学院 成都 610064) (2中国科学院成都生物研究所 成都 610041)
Author(s):
SU Min JIANG Yong ZHANG Yao GAO Ping LI Daping
(1School of Life Sciences, Sichuan University, Chengdu 610064, China) (2Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China)
关键词:
生物电化学系统H2CO2生物合成有机物
Keywords:
bioelectrochemical system H2 CO2 biosynthesis simple organic compound
分类号:
TM911.45 : Q936
DOI:
10.3724/SP.J.1145.2013.00827
摘要:
采用生物电化学系统还原CO2合成有机物已成为环境领域的研究热点。通过构建生物电化学耦合H2还原CO2的系统,研究恒定阴极电势对微生物利用H2还原CO2合成乙酸和乙醇的影响以及菌群变化。结果表明,在-0.75 V(vs. Ag/AgCl)阴极电势下运行12 d后,乙酸的最高产量是无外加电势对照组的2.2倍,达到2 810 (±80) mg/L,乙醇达到110 (±5) mg/L,是无外加电势对照的1.5倍。循环伏安扫描显示,外加阴极电势下,菌体呈现出更强的电化学活性。扫描电镜观察发现,阴极碳毡上菌体数量较多,多为杆状菌。PCR-DGGE种群分析表明,恒定电势的微生物菌群乙酸杆菌Acetobacterium为优势菌群。本研究提供了一种通过控制极化电势来富集驯化CO2还原菌的技术,同时也可加深对生物电化学系统还原CO2合成有机物过程的认识。 图 6 参39
Abstract:
Reduction of CO2 to organics with bioelectrochemical system has been a research hotspot of environmental biology. In this study, a coupled bioelectrochemical system was constructed for reducing CO2 in the presence of H2. With the biocathode potential at -0.75 V (vs. Ag/AgCl), the system was evaluated about its capacity in producing acetate and ethanol from CO2, and the composition of the active microbial population was assessed. After 12 days, the maximum production of acetate and ethanol was enhanced to 2 810 (?0) mg/L and 110 (?) mg/L, respectively. The accumulations of acetate and ethanol were 2.2 and 1.5 times respectively those of the con??trol without setting cathode potential. CV tests suggested that microorganisms on the biocathodes showed higher electrochemical activity than the control without setting cathode potential. SEM showed the cathodes were densely covered with rod-shaped microorganisms. PCR-DGGE revealed the biocathode was dominated by Acetobacterium. This study adds to the knowledge of bioelectrochemical system for CO2 reduction to organic compounds, and provides a method for active microorganisms enrichment. Fig 6, Ref 39

参考文献/References:

Lal R. Sequestration of atmospheric CO2 in global carbon pools [J]. Energy Environ Sci, 2008, 1 (1): 86-100 Olajire AA. CO2 capture and separation technologies for end-of-pipe applications - A review [J]. Energy, 2010, 35 (6): 2610-2628 Saini R, Kapoor R, Kumar R, Siddiqi TO, Kumar A. CO2 utilizing microbes - A comprehensive review [J]. Biotechnol Adv, 2011, 29 (6): 949-960 Chang EH, Yang SS. Some characteristics of microalgae isolated in Taiwan for biofixation of carbon dioxide [J]. Bot Bull Acad Sin, 2003, 44 (1): 43-52 Otsuki T. A study for the biological CO2 fixation and utilization system [J]. Sci Total Environ, 2001, 277 (1-3): 21-25 Ragsdale SW. The Eastern and Western branches of the Wood/Ljungdahl pathway: how the East and West were won? [J]. Biofactors, 1997, 6 (1): 3-11 Steinbusch KJJ, Hamelers HVM, Buisman CJN. Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures [J]. Water Res, 2008, 42 (15): 4059-4066 Steinbusch KJJ, Arvaniti E, Hamelers HVM, Buisman CJN. Selective inhibition of methanogenesis to enhance ethanol and n-butyrate production through acetate reduction in mixed culture fermentation [J]. Bioresour Technol, 2009, 100 (13): 3261-3267 Luo G, Angelidaki I. Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture [J]. Biotechnol Bioeng, 2012, 109 (11): 2729-2736 Boretti A. Renewable hydrogen to recycle CO(2) to methanol [J]. Intern J Hydrogen Energy, 2013, 38 (4): 1806-1812 Hamelers HVM, Ter Heijne A, Sleutels THJA, Jeremiasse AW, Strik DPBTB, Buisman CJN. New applications and performance of bioelectrochemical systems [J]. Appl Microbiol Biotechnol, 2010, 85 (6): 1673-1685 Kim S, Choi K, Chung J. Reduction in carbon dioxide and production of methane by biological reaction in the electronics industry [J]. Intern J Hydrogen Energy, 2013, 38 (8): 3488-3496 Wagner RC, Call DI, Logan BE. Optimal set anode potentials vary in bioelectrochemical systems [J]. Environ Sci Technol, 2010, 44 (16): 6036-6041 Tender LM, Reimers CE, Stecher HA, Holmes DE, Bond DR, Lowy DA, Pilobello K, Fertig SJ, Lovley DR. Harnessing microbially generated power on the seafloor [J]. Nat Biotechnol, 2002, 20 (8): 821-825 Bond DR, Holmes DE, Tender LM, Lovley DR. Electrode-reducing microorganisms that harvest energy from marine sediments [J]. Science, 2002, 295 (5554): 483-485 Huang L, Chai X, Chen G, Logan BE. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells [J]. Environ Sci Technol, 2011, 45 (11): 5025-5031 Ter Heijne A, Strik DPBTB, Hamelers HVM, Buisman CJN. Cathode potential and mass transfer determine performance of oxygen reducing biocathodes in microbial fuel cells [J]. Environ Sci Technol, 2010, 44 (18): 7151-7156 Beschkov V, Velizarov S, Agathos SN, Lukova V. Bacterial denitrification of waste water stimulated by constant electric field [J]. Biochem Eng J, 2004, 17 (2): 141-145 Shin HS, Zeikus JG, Jain MK. Electrically enhanced ethanol fermentation by Clostridium thermocellum and Saccharomyces cerevisiae [J]. Appl Microbiol Biotechnol, 2002, 58 (4): 476-481 Steinbusch KJJ, Hamelers HVM, Schaap JD, Kampman C, Buisman CJN. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures [J]. Environ Sci Technol, 2010, 44 (1): 513-517 Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds [J]. mBio, 2010, 1 (2): e00103-00110-e00103-00110 Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, Snoeyenbos-West OL, Lovley DR. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms [J]. Appl Environ Microbiol, 2011, 77 (9): 2882-2886 Zhao H, Zhang Y, Zhao B, Chang Y, Li Z. Electrochemical reduction of carbon dioxide in an MFC–MEC system with a layer-by-layer self-assembly carbon nanotube/cobalt phthalocyanine modified electrode [J]. Environ Sci Technol, 2012, 46 (9): 5198–5204 Srikanth S, Venkateswar Reddy M, Venkata Mohan S. Microaerophilic microenvironment at biocathode enhances electrogenesis with simultaneous synthesis of polyhydroxyalkanoates (PHA) in bioelectrochemical system (BES) [J]. Bioresour Technol, 2012, 125: 291-299 Jiang Y, Su M, Zhang Y, Zhan G, Tao Y, Li D. Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate [J]. Intern J Hydrogen Energy, 2013, 38 (8): 3497-3502 Choi O, Um Y, Sang BI. Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor [J]. Biotechnol Bioeng, 2012, 109 (10): 2494-2502 Su WT, Zhang LX, Li DP, Zhan GQ, Qian JW, Tao Y. Dissimilatory nitrate reduction by Pseudomonas alcaliphila with an electrode as the sole electron donor [J]. Biotechnol Bioeng, 2012, 109 (11): 2904-2910 Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture [J]. Bioresour Technol, 2010, 101 (9): 3085-3090 Muyzer G, Dewaal EC, Uitterlinden AG. Profiling of complex microbial-populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16S ribosomal-RNA [J]. Appl Environ Microbiol, 1993, 59 (3): 695-700 Yu L, Duan J, Zhao W, Huang Y, Hou B. Characteristics of hydrogen evolution and oxidation catalyzed by Desulfovibrio caledoniensis biofilm on pyrolytic graphite electrode [J]. Electrochim Acta, 2011, 56 (25): 9041-9047 Cordas CM, Guerra LT, Xavier C, Moura JJG. Electroactive biofilms of sulphate reducing bacteria [J]. Electrochim Acta, 2008, 54 (1): 29-34 Xia X, Sun Y, Liang P, Huang X. Long-term effect of set potential on biocathodes in microbial fuel cells: electrochemical and phylogenetic characterization [J]. Bioresour Technol, 2012, 120: 26-33 Muller V. Energy Conservation in Acetogenic Bacteria [J]. Appl Environ Microbiol, 2003, 69 (11): 6345-6353 Stams AJM, de Bok FAM, Plugge CM, van Eekert MHA, Dolfing J, Schraa G. Exocellular electron transfer in anaerobic microbial communities [J]. Environ Microbiol, 2006, 8 (3): 371-382 Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR. Shewanella Secretes flavins that mediate extracellular electron transfer [J]. Proc Natl Acad Sci USA, 2008, 105 (10): 3968-3973 Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds [J]. mBio, 2010, 1 (2): e00103-10 Desloover J, Arends Jan?BA, Hennebel T, Rabaey K. Operational and technical considerations for microbial electrosynthesis [J]. Biochem Soc Transactions, 2012, 40 (6): 1233-1238 Rabaey K, Rozendal RA. Microbial electrosynthesis - revisiting the electrical route for microbial production [J]. Nat Rev Microbiol, 2010, 8 (10): 706-716 张廷滔, 张礼霞, 高平, 李大平. 混合菌群生物燃料电池的产电机理与特性. 应用与环境生物学报, 2012, 18 (3): 465-470 [Zhang TT, Zhang LX, Gao P, Li DP. Mechanism and characteristics of electicity generation in microbial fuel cells catalyzed by mixed culture. Chin J Appl Environ Biol, 2012, 18 (3): 465-470]

相似文献/References:

[1]蒋永,苏敏,张尧,等.生物电化学系统还原二氧化碳同时合成甲烷和乙酸[J].应用与环境生物学报,2013,19(05):833.[doi:10.1088/1748-9326/5/3/034011]
 JIANG Yong,SU Min,ZHANG Yao,et al.Simultaneous Production of Methane and Acetate from Carbon Dioxide with Bioelectrochemical Systems[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):833.[doi:10.1088/1748-9326/5/3/034011]
[2]张尧,张闻杰,蒋永,等.生物电化学系统固定二氧化碳同时产生乙酸和丁酸[J].应用与环境生物学报,2014,20(02):174.[doi:10.3724/SP.J.1145.2014.00174]
 ZHANG Yao,ZHANG Wenjie,JIANG Yong,et al.Simultaneous microbial electrosynthesis of acetate and butyrate from carbon dioxide in bioelectrochemical systems[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):174.[doi:10.3724/SP.J.1145.2014.00174]
[3]唐家桓,刘毅,周顺桂,等.电活性生物膜:形成、表征及应用[J].应用与环境生物学报,2014,20(06):1096.[doi:10.3724/SP.J.1145.2014.03028]
 TANG Jiahuan,LIU Yi,ZHOU Shungui,et al.Electrochemically active biofilms: formation, characterization and application[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):1096.[doi:10.3724/SP.J.1145.2014.03028]

备注/Memo

备注/Memo:
收稿日期 Received: 2012-12-13 接受日期 Accepted: 2013-03-11*国家自然科学基金项目(31270166,51074149)资助 Supported by the National Natural Science Foundation of China (Nos. 31270166, 51074149)**通讯作者 Corresponding author (E-mail: lidp@cib.ac.cn)9a
更新日期/Last Update: 2013-10-28