|本期目录/Table of Contents|

[1]崔旸,苏文涛,高平,等.还原性硫化物微生物燃料电池偶联偶氮染料降解[J].应用与环境生物学报,2012,18(06):978-982.[doi:10.3724/SP.J.1145.2012.00978]
 CUI Yang,SU Wentao,GAO Ping,et al.Microbial Fuel Cell Coupled Bio-oxidation of Reducing Sulfide with Degradation of Azo Dyes[J].Chinese Journal of Applied & Environmental Biology,2012,18(06):978-982.[doi:10.3724/SP.J.1145.2012.00978]
点击复制

还原性硫化物微生物燃料电池偶联偶氮染料降解()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
18卷
期数:
2012年06期
页码:
978-982
栏目:
研究论文
出版日期:
2012-12-25

文章信息/Info

Title:
Microbial Fuel Cell Coupled Bio-oxidation of Reducing Sulfide with Degradation of Azo Dyes
作者:
崔旸 苏文涛 高平 李大平
(1四川大学生命科学学院 成都 610064)
(2中国科学院成都生物研究所 成都 610041)
Author(s):
CUI Yang SU Wentao GAO Ping LI Daping
(1School of Life Sciences, Sichuan University, Chengdu 610064, China)
(2Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China)
关键词:
微生物燃料电池还原性硫化物偶氮染料甲基橙生物氧化脱色废水处理
Keywords:
microbial fuel cell reducing of sulfide azo dye methyl orange biological oxidation decolorization wastewater treatment
分类号:
TM911.45 : X172
DOI:
10.3724/SP.J.1145.2012.00978
文献标志码:
A
摘要:
以处理实际废水中的还原性硫化物以及染料废水中的偶氮染料为目的,构建了一个双室微生物燃料电池(Microbial fuel cell,MFC),阳极室接种硫氧化菌,阴极室以甲基橙(MO)作为电子受体,同时进行还原性硫化物生物氧化偶联偶氮染料降解. 阳极接入硫氧化菌的 MFC在外电阻为 1 000 ?,甲基橙溶液浓度为 50 mg L-1时,以4 d为一个反应周期,通过采集电池电压(V)、光谱扫描和循环伏安(CV)扫描来考察实验 MFC的效率以及扫描电子显微镜(Scanning electron microscopy,SEM)来观察阳极生物膜. 结果表明,阳极接种 MFC的内阻为 400 ?,最大电流密度和最大功率密度可分别达到 656.25 mA m-2和 120.76 mW m-2,而阳极未接种的空白 MFC仅能达到 259.38 mA m-2和 34.81 mW m-2. 一个周期结束时,还原性硫化物完全被氧化,偶氮染料颜色由红色变为透明. SEM显示阳极碳毡上细菌的形态为杆状. 综合以上结果,可说明可以通过MFC将还原性硫化物氧化并将偶氮染料进行降解. 图7 参18
Abstract:
The purpose of this paper is to treat the reducing sulfide in the real wastewater and azo dyes in the dying wastewater. By building a dual-chamber microbial fuel cell (MFC), the sulfur-oxidizing bacteria were inoculated in the anode chamber and the methyl orange (MO) was as an electron acceptor in the cathode chamber, achieving bio-oxidation of sulfide and degradation of azo dyes simultaneously. The efficiency of the MFC was evaluated by the output voltage (V), UV spectrum analysis, polarization curve and cyclic voltammetry (CV) in a cycle of four days with a 1 000 ? external resistance and 50 mg L-1 methyl orange solution in the cathode chamber. The anode biofilm was observed via the scanning electron microscopy (SEM). The results showed that the internal resistance, the maximum current density and the maximum power density of the MFC were 400 ?, 656.25 mA m-2 and 120.76 mW m-2, respectively, with the sulfur-oxidizing bacteria in the anode chamber, But the maximum current density and the maximum power density of the MFC without the sulfur-oxidizing bacteria inoculated in the anode chamber could only reached 259.38 mA m-2 and 34.81 mW m-2, respectively. At the end of a cycle, the reducing sulfide was oxidized completely and the color of the azo dyes changed from red to transparent. The bacteria on the anode carbon felt appeared rod-shaped. The results of above proved the oxidation of the reducing sulfide and degradation of azo dyes. Fig 7, Ref 18

参考文献/References:

1 Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Microbial fuel cells: methodology and technology. Environ Sci Technol, 2006, 40 (17): 5181~5192
2 Logan BE, Cheng S, Watson V, Estadt G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol, 2007, 41 (9): 3341~3346
3 Nielsen AH, Lens P, Vollertsen J, Hvitved-Jacobsen T. Sulfide-iron interactions in domestic wastewater from a gravity sewer. Water Res, 2005, 39 (12): 2747~2755
4 Kante K, Bandosz TJ. Sewage sludge/metal sludge/waste oil composites as catalysts for desulfurization of digester gas. Energy Fuel, 2008, 22 (1): 389~397
5 Ateya BG, AlKharafi FM, Al-Azab AS. Electrodeposition of sulfur from sulfide contaminated brines. Electrochem Solid State Lett, 2003, 6 (9): C137~140
6 Anja K, Peter S, Heide N. Anaerobic sulfide oxidationwith nitrate by a freshwater Beggiatoa enrichment culture. Appl Environ Microbial, 2006, 72 (7): 4755~4760
7 Rabaey K, Sompel K, Maignien L, Boon N, Aelterman P, Clauwaert P, Schamphelaire L, Pham H, Vermeulen J, Verhaege M, Lens P, Verstraete W. Microbial fuel cells for sulfide removal. Environ Sci Technol, 2006, 40: 5218~5224
8 Sun M, Mu ZX, Chen YP, Sheng GP, Liu XW, Chen YZ, Zhao Y, Wang HL, Yu HQ, Wang HL, Yu HQ, Wei L, Ma F. Microbe-assisted sulfide oxidation in the anode of a microbial fuel cell. Environ Sci Technol, 2009, 43: 3372~3377
9 Dutta PK, Rabaey K, Yuan Z, Keller J. Spontaneous electrochemical removal of aqueous sulfide. Water Res, 2008, 42 (20): 4965~4975
10 Zhao F, Harnisch F, Schroder U, Scholz F, Bogdanoff P, Herrmann I. Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environ Sci Technol, 2006, 40 (17): 5193~5199
11 Yin L (尹亮), Chen ZH (陈章和), Zhao SJ (赵树进). Progress of studies in decolorization of azo dyes by microorganisms and gene engineering for decoloring bacteria of azo dyes. Biotechnology (生物技术), 2007, 17 (6): 86~89
12 Song ZY (宋智勇), Zhou JT (周集体), Wang J (王竟), Yan B (严滨), Du CH (杜翠红). Progress on bio-decolorization of azo-dye wastewater. Environ Sci & Technol (环境科学与技术), 2003, 26: 78~80
13 Editing Committee of Monitoring and Analysis Methodology for Water and Wastewater, State Environmental Protection Administration of China (国家环境保护总局《水和废水监测分析方法》编委会). Monitoring and Analysis Methodology for Water and Wastewater. 4th ed. Beijing: Chinese Environmental Science Press (北京: 中国环境科学出版社), 1990
14 Wang HR (王海人), Shi XY (石兴阳), Fu YJ (付亚平), Qun JE (曲娟娥). Study on decolorization of methyl orange simulated dye wastewater by copperized-iron inner electrolysis process. Environ Sci & Technol (环境科学与技术), 2010, 33 (12F): 319~321
15 Kong LG (孔令国), Wang L (王玲), Xue JJ (薛建军). Process of methyl orange simulated wastewater degraded by supported bipolar three-dimension particle electrodes. China Environ Sci (中国环境科学), 2010, 30 (4): 516~521
16 Ding HR, Li Y, Lu AH, Jin S, Quan C, Wang CQ, Wang X, Zeng CP, Yan YH. Photocatalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode. Bioresour Technol, 2010, 101: 3500~3505
17 Liu L, Li FB, Feng CH, Li XZ. Microbial fuel cell with an azo-dye-feeding cathode. Microbiol & Biotechnol, 2009, 85 (1): 175~183
18 Bi Z (毕哲), Hu YY (胡勇有), Sun J (孙健). Simultaneous decolorization of zao dye and bioelectricity generation using a bio-cathode microbial fuel cell. Acta Sci Circumst (环境科学学报), 2009, 29 (8): 1635~1642

相似文献/References:

[1]李登兰,洪义国,许玫英,等.微生物燃料电池构造研究进展[J].应用与环境生物学报,2008,14(01):147.
 LI Denglan,et al..Progress in Construction of Microbial Fuel Cell[J].Chinese Journal of Applied & Environmental Biology,2008,14(06):147.
[2]张雅舒,张礼霞,李大平.微生物燃料电池还原二氧化铅及产电研究[J].应用与环境生物学报,2012,18(05):780.[doi:10.3724/SP.J.1145.2012.00780]
 ZHANG Yashu,ZHANG Lixia,LI Daping.Simultaneous Reduction of Lead Dioxide and Improvement of Bioelectricity Production in Microbial Fuel Cell[J].Chinese Journal of Applied & Environmental Biology,2012,18(06):780.[doi:10.3724/SP.J.1145.2012.00780]
[3]郭静,徐自祥,付亚星,等.产电微生物基因组及代谢网络分析[J].应用与环境生物学报,2012,18(06):1075.[doi:10.3724/SP.J.1145.2012.01075]
 GUO Jing,XU Zixiang,FU Yaxing,et al.Analysis on Electricigen Genomes and Metabolic Networks[J].Chinese Journal of Applied & Environmental Biology,2012,18(06):1075.[doi:10.3724/SP.J.1145.2012.01075]
[4]刘柯,李大平,王娟.尿液微生物燃料电池研究[J].应用与环境生物学报,2015,21(01):36.[doi:10.3724/SP.J.1145.2014.03030]
 LIU Ke,LI Daping,WANG Juan.Study on urine microbial fuel cell[J].Chinese Journal of Applied & Environmental Biology,2015,21(06):36.[doi:10.3724/SP.J.1145.2014.03030]
[5]华涛,李胜男,周启星,等.生物电化学系统3种典型构型及其应用研究进展[J].应用与环境生物学报,2018,24(03):663.[doi:10.19675/j.cnki.1006-687x.2017.08046]
 HUA Tao,LI Shengnan,ZHOU Qixing,et al.Recent advances in three typical configurations and applications of bioelectrochemical systems[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):663.[doi:10.19675/j.cnki.1006-687x.2017.08046]
[6]蒋沁芮,李泽华,杨暖,等.三维电极微生物燃料电池处理生活污水同步产电性能[J].应用与环境生物学报,2018,24(04):873.[doi:10.19675/j.cnki.1006-687x.2017.11011]
 JIANG Qinrui,LI Zehua,et al.Microbial fuel cell with three-dimensional electrodes for domestic wastewater treatment and electricity generation[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):873.[doi:10.19675/j.cnki.1006-687x.2017.11011]
[7]倪宏宇航,弓雨欣,李祥锴.微生物燃料电池阳极电极的新型材料与修饰方法[J].应用与环境生物学报,2019,25(04):999.[doi:10.19675/j.cnki.1006-687x.2018.12022]
 NI Hongyuhang,GONG Yuxin & LI Xiangkai**.Application of recent modification methods and materials in microbial fuel cell anode electrodes[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):999.[doi:10.19675/j.cnki.1006-687x.2018.12022]

备注/Memo

备注/Memo:
国家自然科学基金项目(Nos. 31000070,No. 51074149)资助 Supported by the National Natural Science Foundation of China (Nos. 31000070, 51074149)
更新日期/Last Update: 2012-12-28