|本期目录/Table of Contents|

[1]白淑琴,阿木日沙那,那仁高娃,等.水稻中硅元素的分布及存在状态[J].应用与环境生物学报,2012,18(03):444-449.[doi:10.3724/SP.J.1145.2012.00444]
 BAI Shuqin,Amurishana,Gaowanaren,et al.Distribution and Status of Silicon in Rice Plant[J].Chinese Journal of Applied & Environmental Biology,2012,18(03):444-449.[doi:10.3724/SP.J.1145.2012.00444]
点击复制

水稻中硅元素的分布及存在状态()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
18卷
期数:
2012年03期
页码:
444-449
栏目:
研究论文
出版日期:
2012-06-25

文章信息/Info

Title:
Distribution and Status of Silicon in Rice Plant
作者:
白淑琴阿木日沙那那仁高娃杨帆王媛王桂花横山拓史
(1内蒙古大学环境与资源学院 呼和浩特 010021)
(2呼和浩特职业学院生化研究所 呼和浩特 010051)
(3日本九州大学大学院理学府化学学科 日本福冈 8128581)
Author(s):
BAI Shuqin Amurishana Gaowanaren YANG Fan WANG Yuan WANG Guihua YOKOYAMA Takushi
(1College of Environment and Resources, Inner Mongolia University, Hohhot 010021, China)
(2Biochemical Research Institute, Hohhot Vocational College, Hohhot 010051, China)
(3Department of Chemistry, Faculty of Sciences, Kyushu University, Fukuoka 8128581, Japan)
关键词:
水稻硅元素的分布硅酸的存在状态X线分析显微镜SEM
Keywords:
rice plant distribution of silicion status of silicic acid X-ray analytical microscope scanning electron microscope (SEM)
分类号:
S511.01
DOI:
10.3724/SP.J.1145.2012.00444
文献标志码:
A
摘要:
利用UV-Vis分光光度计、X线分析显微镜及扫描电子显微镜(Scanning electron microscope,SEM)对水稻不同器官中硅元素的含量、分布及存在状态进行观察和分析,研究水稻中硅酸的化学性质,为水稻硅元素的综合利用提供科学依据. 结果表明:水稻以可溶性原硅酸的形式吸收土壤中的硅酸,同样以可溶性原硅酸的形式输送到各器官中. 不同的生长期,水稻导管液内的可溶性原硅酸的含量不同,成熟期最高可达到912 mg/L(以SiO2表示). 通过比较导管汁液和土壤溶液的硅酸浓度可知,水稻选择性地吸收和浓缩硅酸,最高浓缩率可达85倍. X线分析显微镜观察发现,硅酸普遍存在于水稻各器官中,越是坚硬的部位硅酸分布得越多. SEM图像表明,沉积在水稻各器官中的硅胶体具有一定的形状且不溶于强酸. 对水稻干燥组分中硅酸含量的分析结果表明,稻壳中硅酸含量最高,达到13.3%,是生产硅单质及碳化硅材料的最有效的资源之一.
Abstract:
The content, distribution and existing form of silicon in tissues of rice plant were analyzed by UV-Vis spectrophotometer, X-ray analytical microscope and scanning electron microscope (SEM), and the chemical properties of silicic acid were investigated, which will provide a scientific basis for comprehensive utilization of silicon in rice plant. The results showed that silicic acid in soil was absorbed by rice plant in the form of monosilicic acid and transferred to different organs. The contents of the silicic acid varied with the growing periods, reaching 912 mg/L (expressed as SiO2) in maturity. The comparison of silicic acid concentrations in xylem sap and in soil solution showed that the silicic acid was selectively absorbed and concentrated during the transportation from soil to xylem, and the concentration ratio of silicic acid was considerably high being 85 fold at maximum. X-ray characteristic images of silicon showed that silicon existed widely in each tissue and its content was higher in the rigid parts. SEM image suggested that the silicon colloid deposited in different organs had specific shapes and was insoluble in strong acid. The content of silicic acid in each tissue was determined after decomposition of organic material with mixed acids, indicating that the highest content of silicic acid of 13.3% was observed in rice hull. As a result, the rice hull is one of the most potential nature resources to produce elemental silicon and silicon carbide materials.

参考文献/References:

1 Han XH (韩兴华), Wang GL (王广龙), Li DZ (李德志). Effect of silicon on increasing yield mechanics of rice and its application. Mod Agric Sci & Technol (现代农业科技), 2006, 8 (Suppl.): 94~94
2 Rao LH (饶立华), Tan LX (覃莲祥), Zhu YX (朱玉贤). Effect of silicon on the growth of rice plant. Plant Physiol Commun (植物生理学通讯), 1986, 3: 20~24
3 Zhu XP (朱小平), Wang YB (王义炳), Li JQ (李家全). Research on properties of silicon nutrition for rice. Chin J Soil Sci (土壤通报), 1995, 26 (5): 232~233
4 Ma JF, Yamaji N. Silicon up take and accumulation in higher plants. Trends Plant Sci, 2006, 11 (8) : 392~397
5 Ma JF. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr, 2004, 50: 11~18
6 Wei CX (魏成熙), Ouyang CT (欧阳昌亭), Zhu ZG (朱正国). The study of the efficiency of calcium silicate fertilizer on rice. Gengzuo Yu Zaipei (耕作与栽培), 1993, 3: 49~51
7 Ma TS (马同生). A review of the study on paddy soil silicon nutrient and silicon fertilizer in China. Turangxue Jinzhan (土壤学进展), 1990, 18 (4): 1~5
8 Gao EM (高尔明), Zhao QZ (赵全志). Physiological effects of silicon fertilizer to increase production of rice. Gengzuo Yu Zaipei ( 耕作与栽培), 1998, 5 (20): 22~28
9 Zhou JH(周建华), Wang YR(王永锐). Physiological studies on poisoning effects of Cd and Cr on rice (Oryza sativa L.) seedlings through inhibition of Si nutrition. Chin J Appl Environ Biol (应用与环境生物学报), 1999, 5 (1): 11~15
10 Ma JF, Takahashi E. Soil, Fertilizer, and Plant Silicon Research in Japan. Amsterdam: Elsevier Science, 2002.49~61
11 Rodrigues FA, Vale FXR, Datnoff LE, Prabhu AS. Effeet of rice growth stages and silicon on sheath blight development. Phytopathology, 2003, 93: 256~261
12 Patwardhan SV, Clarson SJ, Perry CC. On the role(s) of additives in bioinspired silicification. Chem Commun, 2005, 9: 1113~1121
13 Ma XL (马雪泷), Fang JY (房江育). Nanometer SiO2 in rice husk, Its development and application. Resour Dev & Market (资源开发与市场), 2005, 21 (5): 389~390
14 Hildebrand M. Biological processing of nanostructrued silica in diatoms. Prog Org Coat, 2003, 47: 256~266
15 Piperno DR, Sues HD. Dinosaurs dined on grass. Science, 2005, 310: 1126~1128
16 Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M. A silicon transporter in rice. Nature, 2006, 440 (30): 688~691
17  Iler RK. The Chemistry of Silica. New York: John Wiley & Sons, 1979
18 Kinrade SD, Deguns EW, Gillson AE, Knight CTG. Complexes of Pentaoxo and Hexaoxo Silicon with Furanoidic Vicinal cis-Diol in Aqueous Solution. J Chem Soc Dalton Trans, 2003: 3713~3716
19 Bai SQ, Tsuji Y, Okaue Y, Yokoyama T. First detection of a silicic acid complex with a catechol derivative under natural conditions. Chem Lett, 2008, 37: 1168~1169
20 藤井弘志. 硅酸和作物生产. 东京: 日本博友社, 2002
21 Lü HD (吕厚东), Li RH (李荣华), Lü HY (吕厚远). Phytolith in plant. Bull Biol (生物学通报), 1992, 10: 18~20
22 Bommel KJCV, Friggeri A, Shinkai S. Organic templates for the generation of inorganic materials. Angew Chem Int Ed, 2003, 42 (9): 980~999
23 Numata M, Sugiyasu K. Haswgawa T, Shikai S. Sol-gel reaction using DNA as a template: An attempt toward transcription of DNA into inorganic materials. Angew Chem Int Ed, 2004, 43: 3279~3283
24 原尚道. Utilization of rice husk ash for calcium silicate lightweight building materials. 矿物学雑誌 (日语), 1988, 18 (6): 405~407
25 清水克彦. From silica biomineralization to silicon biotechnology. 化学和生物, 2001, 39 (10): 634~636

相似文献/References:

[1]闵航,陈美慈,钱泽澍.水田中水稻、稗草和异型莎草甲烷排放的生物学特性[J].应用与环境生物学报,1995,1(02):114.
 Min Hang,Chen Meici,Qian Zheshu.BIOLOGICAL CHARACTERISTICS OF METHANE EMISSION THROUGH ORYZA SATIVA,PANICUM CRUS-GALLI AND CYPERUS DIFFORMIS GROWING IN PADDY SOIL[J].Chinese Journal of Applied & Environmental Biology,1995,1(03):114.
[2]吴照辉,贺立源,严昶,等.低磷胁迫对水稻地上部钙、镁吸收和积累的影响[J].应用与环境生物学报,2009,15(03):295.[doi:10.3724/SP.J.1145.2009.00295]
 WU Zhaohui,HE Liyuan,YAN Chang,et al.Effect of Low Phosphorus Stress on Calcium and Magnesium Absorption and Accumulation in Rice Shoot[J].Chinese Journal of Applied & Environmental Biology,2009,15(03):295.[doi:10.3724/SP.J.1145.2009.00295]
[3]郭再华,孟萌,侯彦琳.磷、砷双重胁迫对不同耐低磷水稻苗期生长及磷、砷吸收的影响[J].应用与环境生物学报,2009,15(05):596.[doi:10.3724/SP.J.1145.2009.00596]
 GUO Zaihua,MENG Meng & HOU Yanlin.Effect of P and As Couple Stress on Growth, and P and As Absorption of Different P-tolerant Rice Seedlings[J].Chinese Journal of Applied & Environmental Biology,2009,15(03):596.[doi:10.3724/SP.J.1145.2009.00596]
[4]王志春,杨福,齐春艳.盐碱胁迫对水稻花粉扫描特征和生活力的影响[J].应用与环境生物学报,2010,16(01):63.[doi:10.3724/SP.J.1145.2010.00063]
 WANG Zhichun,YANG Fu,QI Chunyan.Effects of Salinity and Sodicity Stresses on Pollen Surface Characteristics and Viability of Rice[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):63.[doi:10.3724/SP.J.1145.2010.00063]
[5]吴照辉,贺立源,严昶,等.低磷胁迫对水稻铁、锰吸收和积累的影响[J].应用与环境生物学报,2010,16(02):185.[doi:10.3724/SP.J.1145.2010.00185]
 WU Zhaohui,HE Liyuan,YAN Chang,et al.Effect of Low Phosphorus Stress on Fe and Mn Absorption and Accumulation by Rice Shoots[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):185.[doi:10.3724/SP.J.1145.2010.00185]
[6]于敏,王文国,王胜华,等.外源柠檬酸对水稻铜毒害的缓解效应[J].应用与环境生物学报,2010,16(05):617.[doi:10.3724/SP.J.1145.2010.00617]
 YU Min,WANG Wenguo,WANG Shenghua,et al.Alleviative Effect of Exogenous Citric Acid on Rice under Copper Toxicity[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):617.[doi:10.3724/SP.J.1145.2010.00617]
[7]罗晓莉,牛向丽,黄维藻,等.水稻DDB1基因的表达特性及功能分析[J].应用与环境生物学报,2011,17(01):1.[doi:10.3724/SP.J.1145.2011.00001]
 LUO Xiaoli,NIU Xiangli,HUANG Weizao,et al.Expression Characteristics and Functional Analysis of Rice DDB1 Gene[J].Chinese Journal of Applied & Environmental Biology,2011,17(03):1.[doi:10.3724/SP.J.1145.2011.00001]
[8]应兴华,欧阳由男,徐霞,等.三唑磷降解对水稻叶绿素含量的影响[J].应用与环境生物学报,2011,17(02):211.[doi:10.3724/SP.J.1145.2011.00211]
 YING Xinghua,OUYANG Younan,XU Xia,et al.Effect of Triazophos Degradation on Chlorophyll Content in Rice (Oryza sativa L.) and Their Correlation Study[J].Chinese Journal of Applied & Environmental Biology,2011,17(03):211.[doi:10.3724/SP.J.1145.2011.00211]
[9]刘红江,陈留根,朱普平,等.农田施用水葫芦对水稻干物质生产与分配的影响[J].应用与环境生物学报,2011,17(04):521.[doi:10.3724/SP.J.1145.2011.00521]
 LIU Hongjiang,CHEN Liugen,ZHU Puping,et al.Effects of Hyacinth Mulching on Dry Matter Production and Distribution of Rice (Oryza sativa L.)[J].Chinese Journal of Applied & Environmental Biology,2011,17(03):521.[doi:10.3724/SP.J.1145.2011.00521]
[10]盛婧,刘红江,陈留根,等.农田施用水葫芦对水稻磷素吸收利用的影响[J].应用与环境生物学报,2011,17(06):803.[doi:10.3724/SP.J.1145.2011.00803]
 SHENG Jing,LIU Hongjiang,CHEN Liugen,et al.Effect of Hyacinth Mulching on Uptake and Utilization of Phosphorus by Rice Plant (Oryza sativa L.)[J].Chinese Journal of Applied & Environmental Biology,2011,17(03):803.[doi:10.3724/SP.J.1145.2011.00803]

备注/Memo

备注/Memo:
国家自然科学基金项目(No. 21066006)、内蒙古自治区自然科学基金项目(No. 2010MS0617)、内蒙古大学高层次人才引进科研启动项目(No. Z20090128)、日本内阁教育、文化、科学、体育和技术研究会之日本九州大学全球卓越中心计划“未来分子系统科学”项目和九州大学跨学科教育和研究开发项目资助
更新日期/Last Update: 2012-06-19