|本期目录/Table of Contents|

 LIU Qian,ZHANG Juan,CHEN Jian,et al.Microencapsulation of Lactic Acid Bacteria with Improved Performance by Spray-congealing[J].Chinese Journal of Applied & Environmental Biology,2012,18(05):824-830.[doi:10.3724/SP.J.1145.2012.00824]





Microencapsulation of Lactic Acid Bacteria with Improved Performance by Spray-congealing
(1江南大学生物工程学院 无锡 214122)
(2江南大学工业生物技术教育部重点实验室 无锡 214122)
(3中国科学院过程工程研究所生化工程国家重点实验室 北京 100190)
(4江南大学食品科学与技术国家重点实验室 无锡 214122)
(5江南大学食品学院 无锡 214122)
LIU Qian ZHANG Juan CHEN Jian ZHANG Yueling WANG Lianyan WANG Miao MA Guanghui DU Guocheng
(1School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China)
(2Key Laboratory of Industrial Biotechnology, Ministry of Education, and School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China)
(3National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China)
(4State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China)
microencapsulation Lactobacillus spray-congealing resistant starch survival rate in human gastrointestinal tract
TQ460.6 : R378.99+2
活菌制剂进入动物消化道后由于经受胃酸、胆盐以及消化酶等的作用而造成活性丧失及肠道定殖困难是目前乳杆菌制剂应用的瓶颈问题. 本研究通过喷雾冷凝法制备干酪乳杆菌微胶囊以增强乳杆菌在人体的益生功能. 选用不同浓度的海藻酸钠溶液与氯化钙溶液作为壁材,考察喷雾冷凝法制备乳杆菌微胶囊的包埋率、胃肠道释放等情况. 通过比较微胶囊的包埋率和粒径分布的效果后,选择海藻酸钠浓度为2%、氯化钙浓度为3%的芯壁材(包埋率最高达95.80%)制备干酪乳杆菌微胶囊. 初始活菌数为109 cfu/mL的乳酸菌微胶囊经模拟人体胃液处理3 h后,仅有24.17%的活菌溢出,证明微胶囊处理后的乳杆菌能够抵抗较低pH值及胃蛋白酶的作用. 之后将微胶囊置入模拟人体肠液中,60 min后微胶囊释放率达到84.22%,表明上述方法制备的乳杆菌微胶囊能够在肠道中释放定殖并发挥其益生作用. 进一步研究表明,添加变性淀粉作为益生元,能够增强乳酸菌微胶囊的耐酸性能,并且在肠液中释放后活菌出现继续增殖的现象. 上述研究结果为选择高效保护剂应用喷雾冷凝法制备乳酸菌微胶囊奠定了研究基础. 图4 表2 参34
The microencapsulation containing Lactobacillus casei by spray-congealing was investigated. The optimal concentrations of sodium alginate and CaCl2 obtained by comparing the encapsulation efficiencies and particle size distributions of microcapsule were 2% and 3%, respectively. Meanwhile, the encapsulation efficiency reached up to 95.80%. Furthermore, the microcapsules with 109 cfu/mL were digested in simulated human gastric juice for 3 h, and only 24.17% of cells escaped from microcapsule, suggesting that the microencapsulation may protect the cells against low pH and pepsin. Subsequently, microcapsules were transferred into the simulated human intestinal juice, and 84.22% of the cells in microcapsules released after treating for 60 min. These results indicated the advantages of spray-congealed microcapsules with proper releasing area and health-promoting effects. Resistant starch was then added as prebiotic based on this formula, and large amounts of viable cells were obtained after 60 min in simulated human intestinal juice in this case. This research demonstrated a novel method that microencapsulation by spray-congealing with protective agent such as resistant starch significantly improved the survival of L. casei during extreme conditions such as the human gastro-intestinal tract, thus enlighten us to exploit its industrial application in the future. Fig 4, Tab 2, Ref 34


1 FAO/WHO. Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria. Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria, 2001
2 Reid G. Probiotics in the treatment of diarrheal diseases. Curr Infect Dis Rep, 2000; 2002, 2 (1): 78~83
3 Marteau P, Boutron-Ruault M. Nutritional advantages of probiotics and prebiotics. Br J Nutr, 2002, 87 (2): 153~158
4 Gill HS. Probiotics to enhance anti-infective defences in the gastrointestinal tract. Best Practice & Res Clin Gastroenterol, 2003, 17 (5): 755~773
5 De R. Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: a review of papers published between 1988 and 1998. Am Soc Clin Nutr, 2000,71 (2): 405~411
6 Lee YK, Salminen S. Handbook of Probiotics and Prebiotics. Wiley-Interscience, 2009
7 Gibson GR, Rastall RA. Gastrointestinal infections and the protective role of probiotics and prebiotics. Food Sci & TechnolBull Funct Foods, 2003, 1 (2): 1~16
8 Ross R, Desmond C, Fitzgerald G, Stanton C. Overcoming the technological hurdles in the development of probiotic foods. JAppl Microbiol, 2005, 98 (6): 1410~1417
9 Benita S. Microencapsulation: Methods and Industrial Applications. Informa HealthCare, 1996. 73
10 Sultana K, Godward G, Reynolds N, Arumugaswamy R, Peiris P, Kailasapathy K. Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Intern J Food Microbiol, 2000, 62 (1~2): 47~55
11 Kailasapathy K. Microencapsulation of probiotic bacteria: Technology and potential applications. Curr Issues Intestinal Microbiol, 2002, 3 (2): 39~48
12 Mortazavian A, Razavi SH, Ehsani MR, Sohrabvandi S. Principles and methods of microencapsulation of probiotic microorganisms. Iranian J Biotechnol, 2007, 5 (1):
13 Gibbs BF, Kermasha S, Alli I, Mulligan CN. Encapsulation in the food industry: a review. Intern J Food Sci & Nutr, 1999, 50 (3): 213~224
14 Liu XG (刘晓庚), Xie YT (谢亚桐). Comparison of preparation methods of micro-encapsulation. Cereal & Food Ind (粮食与食品工业), 2005, 12 (1): 28~31
15 Maschke A, Becker C, Eyrich D, Kiermaier J, Blunk T, Gopferich A. Development of a spray congealing process for the preparation of insulin-loaded lipid microparticles and characterization thereof. Eur J Pharm & Biopharm, 2007, 65 (2): 175~187
16 Zuppa AA, Savarese I, Scorrano A, Calabrese V, D’Andrea V, Fracchiolla A, Cota E, Sindico P, Romagnoli C. Prebiotics and probiotics in infant nutrition. Pediatria Med Chirurgica Med & Surgical Pediatrics, 2007, 29 (2): 69~83
17 Chen CC, Walker WA. Probiotics and prebiotics: Role in clinical disease states. Adv Pediatrics, 2005, 52: 77~113
18 Topping DL, Fukushima M, Bird AR. Resistant starch as a prebiotic and synbiotic: State of the art. Cambridge University Press, 2003, 62 (1): 171~176
19 Kleessen B, Stoof G, Proll J, Schmiedl D, Noack J, Blaut M. Feeding resistant starch affects fecal and cecal microflora and short-chain fatty acids in rats. Am Soc Animal Sci, 1997, 75 (9): 2453
20 Gbassi GK, Vandamme T, Ennahar S, Marchioni E. Microencapsulation of Lactobacillus plantarum spp. in an alginate matrix coated with whey proteins. InternJ Food Microbiol, 2009, 129 (1): 103~105
21. Junyaprasert VB, Manwiwattanakul G. Release profile comparison and stability of diltiazem- resin microcapsules in sustained release suspensions. Intern J Pharm, 2008, 352 (1~2): 81~91
22 National Formulary Committees (国家药典委员会). Chinese Pharmacopoeia. 2005
23 Woraharn S, Chaiyasut C, Sirithunyalug B, Sirithunyalug J. Survival enhancement of probiotic Lactobacillus plantarum CMU-FP002 by granulation and encapsulation techniques. Afr J Microbiol Res, 2010, 4 (20): 2086~2093
24 Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 1999, 20 (1): 45~53
25 Smidsrd O, Skjaok-Brk G. Alginate as immobilization matrix for cells. Trends Biotechnol, 1990, 8: 71~78
26 Chávarri M, Mara?ón I, Ares R, Ibá?ez FC, Marzo F, Villarán MC. Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Intern J Food Microbiol, 2010, 142 (1~2): 185~189
27 Zhao R, Sun J, Torley P, Wang D, Niu S. Measurement of particle diameter of Lactobacillus acidophilus microcapsule by spray drying and analysis on its microstructure. World J Microbiol & Biotechnol, 2008, 24 (8): 1349~1354
28 Blandino A, Macas M, Cantero D. Formation of calcium alginate gel capsules: influence of sodium alginate and CaCl2 concentration on gelation kinetics. J Biosci & Bioeng, 1999, 88 (6): 686~689
29 Chandramouli V, Kailasapathy K, Peiris P, Jones M. An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J Micro-biol Methods, 2004, 56 (1): 27~35
30 Gilliland SE. Beneficial interrelationships between certain microorganisms and humans: Candidate microorganisms for use as dietary adjuncts. 1979, 42 (2): 164~167
31 Guo J (郭佳), Chen L (陈琳), Zhang BL (张柏林). The survival of dietary fiber-based microencapsulated Lactobacillus acidophilus NCFM. J Dairy Sci & Technol, 2008, 31 (5): 201~206
32 Le Tien C, Millette M, Mateescu MA, Lacroix M. Modified alginate and chitosan for lactic acid bacteria immobilization. Biotechnol & Appl Biochem, 2004, 39 (3): 347~354
33 Zhuang HN (庄海宁), Zhang YP (张燕萍), Jin ZY (金征宇). Review of resistant starch 3 and its application in probiotic bacteria microcapsule. J Food Sci & Biotechnol (食品与生物技术学报), 2008, 27 (6): 1~4
34 Iyer C, Kailasapathy K. Effect of co-encapsulation of probiotics with prebiotics on increasing the viability of encapsulated bacteria under in vitro acidic and bile salt conditions and in yogurt. J Food Sci, 2005, 70 (1): M18~M23


 MA Junxiao,KONG Jian,JI Mingjie.Detection of the Lactic Acid Bacteria in Commercial Yoghurts by PCR-denaturing Gradient Gel Electrophoresis[J].Chinese Journal of Applied & Environmental Biology,2009,15(05):534.[doi:10.3724/SP.J.1145.2009.00534]
 XIONG Ya,CHEN Qiang,TANG Yuming,et al.PCR-DGGE Analysis of Lactobacillus Diversity in Pit Muds of Different Cellar-aged Luzhou Laojiao Liquor[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):1020.[doi:10.3724/SP.J.1145.2013.01020]
[3]杨云喜,李佩,徐岳松,等. 产抗菌肽乳酸菌的分离、鉴定及培养条件优化[J].应用与环境生物学报,2014,20(05):817.[doi:10.3724/SP.J.1145.2013.12044]
 YANG Yunxi,LI Pei,XU Yuesong,et al. Isolation and identification of antimicrobial peptides-producing lactic acid bacteria and optimization of the culture conditions[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):817.[doi:10.3724/SP.J.1145.2013.12044]
 LIU Yuanxue,LI Xiaohui**,SHI Wenzheng,et al.Effects of the culture conditions on the separation of intestinal lactic acid bacteria in tilapia[J].Chinese Journal of Applied & Environmental Biology,2016,22(05):133.[doi:10.3724/SP.J.1145.2015.06010]
 ZHANG Juntao,HUANG Xiying,LI Rong,et al.Diversity of culturable lactic acid bacteria and screening of silage strains in vegetable waste from Sichuan province, China[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):1428.[doi:10.19675/j.cnki.1006-687x.2019.02027]
 WU Haizhen,YANG Danni,LIAN Weishao,et al.Screening of cholesterol-lowering lactic acid bacteria and its in vitro synergistic lipid-lowering effect with hawthorn[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):174.[doi:10.19675/j.cnki.1006-687x.2019.04061]
 HUANG Xiying,ZHANG Juntao,DENG Lisha & GU Yunfu.Screening and resistance analysis of lactic acid bacteria cross-resistant to antibiotics and lead in vegetable waste[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):319.[doi:10.19675/j.cnki.1006-687x.2019.05008]
 QIAN Wei,LU Zhenming,et al.Differences in the lactic acid bacterial community structure between jiupei and pit mud during the fermentation of Luzhou-flavour baijiu[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):760.
[9]刘义,周火祥,曹瑜,等.一株泡菜产细菌素乳酸菌的鉴定[J].应用与环境生物学报,2020,26(06):1460.[doi:DOI: 10.19675/j.cnki.1006-687x.2020.07050]
 LIU Yi,ZHOU Huoxiang,Cao Yu,et al.Identification of bacteriocin-producing Lactobacillus from pickle[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):1460.[doi:DOI: 10.19675/j.cnki.1006-687x.2020.07050]
[10]刘义 周火祥 曹瑜 宋玲玲 何桂桦 宋文琦 乔代蓉 曹毅**.一株泡菜产细菌素乳酸菌的鉴定[J].应用与环境生物学报,2021,27(04):1.[doi:10.19675/j.cnki.1006-687x.2020.07050]
 LIU Yi,ZHOU Huoxiang,Cao Yu,et al.Identificantion of Bacteriocin-Producing Lactobacillus from Pickle[J].Chinese Journal of Applied & Environmental Biology,2021,27(05):1.[doi:10.19675/j.cnki.1006-687x.2020.07050]


国家自然科学基金重点项目(No. 20836003)、国家自然科学基金项目(No. 30900013)和江南大学自主科研计划面上项目(JUSRP 21009)资助
更新日期/Last Update: 2012-10-26