|本期目录/Table of Contents|

[1]马驿,彭金菊,陈进军,等.诺氟沙星对土壤微生物碳代谢功能多样性的影响[J].应用与环境生物学报,2012,18(06):1033-1037.[doi:10.3724/SP.J.1145.2012.01033]
 MA Yi,PENG Jinju,CHEN Jinjun,et al.Effect of Norfloxacin on Carbon-source Metabolic Functional Diversity of Soil Microbial Communities[J].Chinese Journal of Applied & Environmental Biology,2012,18(06):1033-1037.[doi:10.3724/SP.J.1145.2012.01033]
点击复制

诺氟沙星对土壤微生物碳代谢功能多样性的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
18卷
期数:
2012年06期
页码:
1033-1037
栏目:
研究简报
出版日期:
2012-12-25

文章信息/Info

Title:
Effect of Norfloxacin on Carbon-source Metabolic Functional Diversity of Soil Microbial Communities
作者:
马驿 彭金菊 陈进军 王芸 陈法霖 孙永学
(1广东海洋大学农学院动物医学系 湛江 524088)
(2中国科学院生态环境研究中心城市与区域生态国家重点实验室 北京 100085)
(3华南农业大学广东省兽药研制与安全评价重点实验室 广州 510642)
Author(s):
MA Yi PENG Jinju CHEN Jinjun WANG Yun CHEN Falin SUN Yongxue
(1Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China)
(2State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China)
(3Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China)
关键词:
诺氟沙星土壤微生物群落碳代谢功能多样性生态毒性BIOLOG检测法
Keywords:
norfloxacin soil microbial community carbon-source metabolic capacity functional diversity ecological toxicity BIOLOG
分类号:
X171.5
DOI:
10.3724/SP.J.1145.2012.01033
文献标志码:
A
摘要:
为了解诺氟沙星在环境中的残留对土壤微生物的影响,借助BIOLOG法对诺氟沙星作用下土壤微生物的碳源利用及代谢功能多样性进行了研究. 研究发现,用药后d 7、d 21、d 35,用药组(诺氟沙星含量1 ?g g-1、10 ?g g-1、100 ?g g-1)BIOLOG微平板上平均每孔颜色变化率(Average well color development,AWCD)均低于对照组;用药d 7,1 ?g g-1、10 ?g g-1、100 ?g g-1组土壤微生物丰富度指数与多样性指数显著低于(P<0.05)对照组,d 21,10 ?g g-1、100 ?g g-1组与对照组差异显著,d 35仅100 ?g g-1组与对照组差异显著. 结果表明,诺氟沙星影响了土壤微生物群落的碳代谢功能,包括代谢强度和代谢多样性,但不同浓度的诺氟沙星对土壤微生物群落代谢功能的影响也不相同. 100 ?g g-1的诺氟沙星在用药的前期和后期均显著影响土壤微生物群落的碳代谢功能,土壤中诺氟沙星积累到该浓度可能对土壤微生物群落碳代谢功能产生难以逆转的长期影响. 图2 表1 参26
Abstract:
The experiment was aimed to investigate the effects of norfloxacin (NOR) on microbial community diversity in soil. The carbon-source metabolic ability and functional diversity of soil microbial communities were analyzed by BIOLOG method. BIOLOG analysis revealed that the average well color development (AWCD) of groups treated with NOR were significantly (P<0.05) lower than those in control (CK) after 7, 21 and 35 days. The results showed that the richness indexes and diversity indexes of groups treated with NOR concentrations of 1 ?g g-1, 10 ?g g-1 and 100 ?g g-1 were significantly (P<0.05) lower than those in CK after 7 days, and groups treated with NOR concentrations of 10 ?g g-1 and 100 ?g g-1 were significantly lower than those in CK after 21 days, group treated with NOR concentrations of 100 ?g g-1 was significantly lower than those in CK after 35 days, respectively. It demonstrated that the carbon-source metabolic capacity and functional diversity of soil microbial communities were weaken after soils amended with NOR. However, the effects were different in groups amended with NOR. It was concluded that a certain accumulation of NOR in soil, for instance, 100 ?g g-1 NOR performed irreversible and long-term effects on the metabolic functions of the soil microbial communities. Fig 2, Tab 1, Ref 2

参考文献/References:

1 Wang JL (王加龙), Liu JZ (刘坚真), Chen ZL (陈杖榴), Chen L (陈林). Effects of enrofloxacin residue on number and community function diversity of soil microbes. Chin J Appl Environ Biol (应用与环境生物学报), 2005, 11 (1): 86~89
2 Tai YP (邰义萍), Mo CH (莫测辉), Wu XL (吴小莲), Li YW (李彦文), Wang JY (王纪阳), Su QY (苏青云), Huang XP (黄献培). Occurrence of quinolone antibiotics in soils from vegetable fields of Dongguan City. Acta Sci Circumst (环境科学学报), 2011, 31 (4): 839~845
3 Kirk JL, Beaudette L A, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT. Methods of studying soil microbial diversity. J Microbiol Methods, 2004, 58 (2): l69~l88
4 Steenwerth KL, Jackson LE, Caldero’n FJ, Stromberg MR, Scow KM. Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California. Soil Biol Biochem, 2002, 34 (11): 1599~1611
5 Liu B (刘波), Zheng XF (郑雪芳), Zhu CX (朱昌雄), Lan JL (蓝江林), Lin YZ (林营志), Lin B (林斌), Ye YH (叶耀辉). The diversity of PLFAs biomarkers for the microbial community in the stroma cushion of non-pollution pigsty. Acta Ecol Sin (生态学报), 2008, 28 (11): 5488~5498
6 Syakti AD, Mazzella N, Nerini D, Guiliano M, Bertrand J C, Doumenq P. Phospholipid fatty acids of a marine sedimentary microbial community in a laboratory microcosm: responses to petroleum hydrocarbon contamination. Org Geochem, 2006, 37 (11): 1617~1628
7 Chen WF (陈文峰), Chen WX (陈文新). Numerical taxonomy and 16S rDNA-PCR RFLP of nodule bacteria isolated from root nodules of leguminous trees, Robinia sp., Dalbergia spp., and Albizia spp. Chin J Appl Environ Biol (应用与环境生物学报), 2003, 9 (1): 53~58
8 Preston-Matham J, Boddy L, Randerson PF. Analysis of microbial community functional diversity using sole-carbon-source utilization profiles-a critique. FEMS Microbiol Ecol, 2002, 42 (1): 1~14
9 Garland JL. Analytical approaches to the characterisation of sample microbial communities using patterns of potential C source utilisation. Soil Biol Biochem, 1996, 28 (2): 213~221
10 Zheng H (郑华), Ouyang ZY (欧阳志云), Fang ZG (方治国), Zhao TQ (赵同谦). Application of BIOLOG to study on soil microbial community functional diversity. Acta Pedol Sin (土壤学报), 2004, 41 (3): 456~461
11 Bossio DD, Scow KM. Impact of carbon and flooding on the metabolic diversity of microbial communities in soils. Appl Environ Microbiol, 1995, 61 (11): 4043~4050
12 Gmyston SJ, Wang S, Campbell CD. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem, 1998, 30 (3): 369~378
13 Kong WD, Zhu YG, Fu BJ, Marschner P, He JZ. The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community. Environ Pollut, 2006, 143 (1): 129~137
14 Zheng H (郑华), Ouyang ZY (欧阳志云), Zhao TQ (赵同谦), Wang XK (王效科), Miao H (苗鸿), Peng TB (彭廷柏). Effect of different forest restoration approaches on soil biological properties. Chin J Appl Environ Biol (应用与环境生物学报), 2006, 12 (1): 36~43
15 Schutter M, Dick R. Shift in substrate utilization potential and structure of soil microbial communities in response to carbon substrates. Soil Biol Biochem, 2001, 33 (11): 1481~1491
16 Garland JL, Mills AL. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source-utilization. Appl Environ Microbiol, 1991, 57 (7): 2351~2359
17 Rogers BF, Tate Ⅲ RL. Temporal analysis of the soil microbial community along a toposequence in Pineland soils. Soil Biol Biochem, 2001, 33 (10): 1389~1401
18 Zabinski CA, Gannon JE. Effects of recreational impacts on soil microbial communities. Environ Manage, 1997, 21 (2): 133~238
19 Ma Y (马驿), Chen ZL (陈杖榴). Effects of enrofloxacin on the functional diversity of soil microbial communities. Asian J Ecotoxicol (生态毒理学报), 2010, 5 (3): 446~452
20 Johannes T. Sorption of veterinary pharmaceuticals in soils: a review. Environ Sci Technol, 2001, 35 (17): 3397~3406
21 Wang JH (王金花), Zhu LS (朱鲁生), Wang J (王军), Xie H (谢慧). Effects of four typical antibiotics on soil microbial respiration. J Agro-Environ Sci (农业环境科学学报), 2011, 30 (11): 2232~2236
22 Liu BY (刘滨扬), Liu WQ (刘蔚秋), Chen JF (陈菊芳), Nie XP (聂湘平), Yu HJ (余惠娟). Effects of three antibiotics on the secondary metabolism of Selenastrum capricornutum. Chin J Appl Environ Biol (应用与环境生物学报), 2011, 16 (6): 765~769
23 Lúcia HMLM Santos, Araújo AN, Adriano F, Pena A, Delerue-Matos C, Montenegro MCBSM. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater, 2010, 175 (13): 45~95
24 Migliorel L, Godeas F, Stefania PDF, Mantovi P, Barchi D, Testa C. Hormetic effect (s) of tetracyclines as environmental contaminant on Zea mays. Environ Pollut, 2010, 158 (1): 129~134
25 Boxall ABA, Kolpin DW, Halling-Scrønsen B, Tolls J. Peer reviewed: are veterinary medicines causing environmental risks? Environ Sci Technol, 2003, 37 (15): 286A~294A
26 Cunningham VL, Constable DJC, Hannah RE. Environmental risk assessment of Paroxetine. Environ Sci Technol, 2004, 38 (12): 3351~3359

相似文献/References:

[1]刘星,王娜,赵博,等.改变碳输入对太岳山油松林土壤酶活性的影响[J].应用与环境生物学报,2014,20(04):655.[doi:10.3724/SP.J.1145.2013.12021]
 LIU Xing,WANG Na,ZHAO Bo,et al.Effects of carbon input changes on soil enzyme activities in a Pinus tabulaeformis forest at the Taiyue Mountain[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):655.[doi:10.3724/SP.J.1145.2013.12021]
[2]杨希智,王长庭,字洪标,等.三江源区不同建植年限人工草地土壤微生物群落结构特征[J].应用与环境生物学报,2015,21(02):341.[doi:10.3724/SP.J.1145.2014.10033]
 YANG Xizhi,WANG Changting,ZI Hongbiao,et al.Soil microbial community structure characteristics in artificial grassland with different cultivation years in the headwater region of Three Rivers, China[J].Chinese Journal of Applied & Environmental Biology,2015,21(06):341.[doi:10.3724/SP.J.1145.2014.10033]
[3]刘 敏 王长庭** 字洪标 胡 雷 杨希智 杨有芳.火烧干扰下高寒草甸土壤微生物群落功能多样性变化特征[J].应用与环境生物学报,2016,22(02):263.[doi:10.3724/SP.J.1145.2015.08019]
 LIU Min,WANG Changting**,ZI Hongbiao,et al.Effects of fire disturbance on the functional diversity of soil microbialcommunity in alpine meadows*[J].Chinese Journal of Applied & Environmental Biology,2016,22(06):263.[doi:10.3724/SP.J.1145.2015.08019]
[4]魏晓骁 陈爱玲 王士亚 曹光球** 蔡培菁 黎 舒.杉木连栽林土壤微生物碳源利用比较?[J].应用与环境生物学报,2016,22(03):518.[doi:10.3724/SP.J.1145.2015.09010]
 WEI Xiaoxiao,CHEN Ailing,WANG Shiya,et al.A comparative study of soil microbial carbon source utilization in different successive rotation plantations of Chinese fir*[J].Chinese Journal of Applied & Environmental Biology,2016,22(06):518.[doi:10.3724/SP.J.1145.2015.09010]
[5]崔羽,贺静雯,刘颖,等.红壤区灾害受损不同林型恢复过程中土壤微生物群落对碳源的利用[J].应用与环境生物学报,2019,25(04):831.[doi:10.19675/j.cnki.1006-687x.2018.12003]
 CUI Yu,HE Jingwen,et al.Utilization of carbon sources by soil microbial communities of different forest types damaged by flood-induced disasters in red soil regions[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):831.[doi:10.19675/j.cnki.1006-687x.2018.12003]
[6]余金阳,黄潇慧,帅正彬,等.四川彭州大蒜根腐病发病土壤细菌与真菌群落结构[J].应用与环境生物学报,2020,26(04):928.
 YU Jinyang,HUANG Xiaohui,SHUAI Zhengbin,et al.The community structure of bacteria and fungi in soils with root rot diseased garlic plants in Pengzhou, Sichuan Province[J].Chinese Journal of Applied & Environmental Biology,2020,26(06):928.
[7]杨思,杨文平,景豆豆,等.麦后复种苜蓿压青还田改善土壤微生物群落结构[J].应用与环境生物学报,2021,27(04):978.[doi:10.19675/j.cnki.1006-687x.2020.11004]
 YANG Si,YANG Wenping,JING Doudou,et al.Improvement of soil microbial community structure by multiple cropping alfalfa after wheat[J].Chinese Journal of Applied & Environmental Biology,2021,27(06):978.[doi:10.19675/j.cnki.1006-687x.2020.11004]
[8]张常洪 张英 朱晓敏** 尹华军.西南山地针叶林根际/菌丝际土壤氮动态对氮添加的响应差异[J].应用与环境生物学报,2022,28(06):1.[doi:10.19675/j.cnki.1006-687x.2021.11022]
 ZHANG Changhong,ZHANG Ying,et al.Differential responses of nitrogen dynamics between the r hizosphere and hyphosphere soils of mountain coniferous forests to N addition in southwest China[J].Chinese Journal of Applied & Environmental Biology,2022,28(06):1.[doi:10.19675/j.cnki.1006-687x.2021.11022]

备注/Memo

备注/Memo:
国家自然科学基金项目(No. 31172368)、广东省自然科学基金项目(No. S2012010010628)和广东省教育厅广东高校优秀青年创新人才培育项目(No. LYM09087)资助 Supported by the National Natural Science Foundation of China (No. 31172368), the Natural Science Foundation of Guangdong, China (No. S2012010010628), and the Foundation for Distinguished Young Talents in Higher Education of Guangdong, China (No. LYM09087)
更新日期/Last Update: 2012-12-28