|本期目录/Table of Contents|

[1]张茜,张娟,堵国成,等.具有微囊藻毒素清除能力的乳酸菌的分离筛选及其影响因素[J].应用与环境生物学报,2012,18(05):745-751.[doi:10.3724/SP.J.1145.2012.00745]
 ZHANG Qian,ZHANG Juan,DU Guocheng,et al.Isolation and Influencing Factors of Lactic Acid Bacteria with Microcystin-LR Degradation Ability[J].Chinese Journal of Applied & Environmental Biology,2012,18(05):745-751.[doi:10.3724/SP.J.1145.2012.00745]
点击复制

具有微囊藻毒素清除能力的乳酸菌的分离筛选及其影响因素()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
18卷
期数:
2012年05期
页码:
745-751
栏目:
研究论文
出版日期:
2012-10-25

文章信息/Info

Title:
Isolation and Influencing Factors of Lactic Acid Bacteria with Microcystin-LR Degradation Ability
作者:
张茜张娟堵国成陈坚
(1江南大学生物工程学院工业生物技术教育部重点实验室 无锡 214122)
(2江南大学食品科学与技术国家重点实验室 无锡 214122)
Author(s):
ZHANG Qian ZHANG Juan DU Guocheng CHEN Jian2
(1Key Laboratory of Industrial Biotechnology of Ministry of Education, and School of Biotechnology, Jiangnan University, Wuxi 214122, China)
(2State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China)
关键词:
微囊藻毒素蓝藻分离筛选干酪乳杆菌生物降解清除率发酵食品
Keywords:
microcystin cyanobacteria screening and separation Lactobacillus casei biodegradation removal rate fermented food
分类号:
X172 : TQ920.1
DOI:
10.3724/SP.J.1145.2012.00745
文献标志码:
A
摘要:
微囊藻毒素是由蓝藻产生的环状多肽物质,可引发人类肝中毒等健康问题,因此微囊藻毒素的清除对食品安全和环境保护有着深远的意义. 本研究从泡菜、腊肠等传统发酵食品中分离筛选获得33株乳酸菌,通过对其微囊藻毒素清除能力的测定,获得一株具有高效微囊藻毒素清除能力的乳酸菌菌株干酪乳杆菌BBE10-212. 实验发现菌体浓度、藻毒素浓度、菌体活性等因素对实验菌株清除藻毒素的效能具有显著影响,此外,外源添加5%的葡萄糖可使藻毒素清除率提高至52%,远高于未添加时的19%. 而外源添加替代藻毒素的微生物发酵氮源以及作为部分代谢关键酶辅酶的金属离子则会抑制菌体对藻毒素的清除效率. 研究结果为深入分析实验菌株清除微囊藻毒素的作用机制,实现微囊藻毒素的生物干预策略,并基于对菌株的代谢调控促进微囊藻毒素的高效降解提供了数据和资料. 图11 表1 参19
Abstract:
Microcystins, a kind of cyclic heptapeptide produced by cyanobacteria, are regarded as hepatotoxins and tumor promoters. In this case, removing cyanobacterial toxins plays an important role in the area of food security and environmental protection. In this study, 33 strains of lactic acid bacteria (LAB) isolated from many sorts of traditionally fermented pickles or sausages were identified, and their abilities to remove the cyanobacterial peptide toxin microcystin-LR (MC-LR) in aqueous solutions were assessed. Among them, the strain BBE10-212 showed the highest efficiency in toxin removal, and was classified phenotypically as a member of Lactobacillus casei on the basis of 16S rDNA sequencing. Furthermore, it was found that bacterial concentration, MC-LR concentration, cell viability and metabolic activity had a profound effect on the removal of MC-LR. In addition, the maximum removal of 52% was observed for BBE10-212 with 5% glucose supplementation compared with 19% removal in PBS alone. However, the existence of some inorganic nitrogen as nitrogen substitute of MC-LR and certain metal ions as key metabolic co-enzymes reduced the removal efficiency of the tested strain. The result of the study supplies a novel way to understand the removal mechanism of MC-LR. Moreover, it enlightens us to improve the removal efficiency of MC-LR with more strategies based on the metabolic control of strains. Fig 11, Tab 1, Ref 19

参考文献/References:

Hitzfeld BC, Hger SJ, Dietrich DR. Cyanobacterial toxins: removal during drinking water treatment, and human risk assessment. Environ Health Perspect, 2000, 108: 113~122
Park H, Namikoshi M, Brittain SM, Carmichael WW, Murphy T. [-Leu1] microcystin-LR, a new microcystin isolated from waterbloom in a Canadian prairie lake. Toxicon, 2001, 39 (6): 855~862
Falconer IR. An overview of problems caused by toxic blue-green algae (cyanobacteria) in drinking and recreational water. Environ Toxicol, 1999, 14 (1): 5~12
Harada K. Chemistry and detection of microcystins. Toxic Microcystis, 1996: 103~148
El-Nezami H, Kankaanpaa P, Salminen S, Ahokas J. Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. Food Chem Toxicol, 1998, 36 (4): 321~326
Haskard CA, El-Nezami HS, Kankaanpaa PE, Salminen S, Ahokas JT. Surface binding of aflatoxin B1 by lactic acid bacteria. Appl Environ Microbiol, 2001, 67 (7): 3086~3091
El-Nezami H, Salminen SJ, Ahokas J. Biologic control of food carcinogens with use of Lactobacillus GG. Nutr Today, 1996, 31 (6): 43S
Peltonen K, El-Nezami H, Haskard C, Ahokas J, Salminen S. Aflatoxin B1 binding by dairy strains of lactic acid bacteria and bifidobacteria. J Dairy Sci, 2001, 84 (10): 2152
Halttunen T, Salminen S, Tahvonen R. Rapid removal of lead and cadmium from water by specific lactic acid bacteria. Int J Food Microbiol, 2007, 114 (1): 30~35
Meriluoto J, Gueimonde M, Haskard CA, Spoof L, Sj vall O, Salminen S. Removal of the cyanobacterial toxin microcystin-LR by human probiotics. Toxicon, 2005, 46 (1): 111~114
Nybom SMK, Salminen SJ, Meriluoto JAO. Removal of microcystin-LR by strains of metabolically active probiotic bacteria. FEMS Microbiol Lett, 2007, 270 (1): 27~33
Nybom SMK, Salminen SJ, Meriluoto JAO. Specific strains of probiotic bacteria are efficient in removal of several different cyanobacterial toxins from solution. Toxicon, 2008, 52 (2): 214~220
Shang J (商军), Zhong FX (钟方旭), Wang YL (王亚林), Sun Y (孙毅). Separation and screening of lactic acid bacteria form several traditional fermented vegetables. Food Sci (食品科学), 2007, 28 (4): 195~198
Wang JF (王建锋), Luo JM (骆健美), Song Y (宋妍), Liu Y (刘洋), Zheng Y (郑宇), Wang M (王敏). The effects of ethanol on cell growth and cell characteristics of Arthrobacter sireplex TCCC 11037. Chem Bioeng (化学与生物工程), 2011, 28 (3): 66~69
Wang ZX (王稚萱), Kong J (孔健). Characterization of 1, 3-propanediol production by Lactobacillus brevis W5-17. Food Ferment Ind (食品与发酵工业), 2007, 33 (4): 6~10
Bourne DG, Jones GJ, Blakeley RL, Jones A, Negri AP, Riddles P. Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR. Appl Environ Microbiol, 1996, 62 (11): 4086
Zhou J (周洁), Yan H (闫海), He HS (何宏胜), Zhong GR (钟广蓉), Zhang C (张超), Lin H (林海). Activity of Delftic acidovorans for the biodegradation of microcystins. Sci Technol Eng (科学技术与工程), 2006, 6 (2): 166~170
Starr TJ, Jones ME. The effect of copper on the growth of bacteria isolated from marine environments. Limnol Oceanogr, 1957: 33~36
Gadd GM. Metals and microorganisms: a problem of definition. FEMS Microbiol Lett, 1992, 100 (1~3): 197~203

相似文献/References:

[1]陈飞,唐鹊辉,肖利娟,等.南亚热带城市中小型水库蓝藻种类组成及其群落季节动态[J].应用与环境生物学报,2018,24(03):595.[doi: 10.19675/j.cnki.1006-687x.2017.08015]
 CHEN Fei,TANG Quehui,XIAO Lijuan,et al.Species composition and seasonal community dynamics of cyanobacteria in small- and medium-sized reservoirs in subtropical cities of southern China[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):595.[doi: 10.19675/j.cnki.1006-687x.2017.08015]
[2]黄成,侯伟,顾继光,等.珠江三角洲城市周边典型中小型水库富营养化与蓝藻种群动态[J].应用与环境生物学报,2011,17(03):295.[doi:10.3724/SP.J.1145.2011.00295]
 HUANG Cheng,HOU Wei,GU Jiguang,et al.Eutrophication and Dynamics of Cyanobacterial Population in Small and Medium-sized Reservoirs Nearby Urban Districts in the Pearl River Delta[J].Chinese Journal of Applied & Environmental Biology,2011,17(05):295.[doi:10.3724/SP.J.1145.2011.00295]

备注/Memo

备注/Memo:
国家自然科学基金重点项目(No. 20836003)、江南大学自主科研计划面上项目(No. JUSRP 21009)和国家自然科学基金项目(No. 30900013)资助
更新日期/Last Update: 2012-10-26