|本期目录/Table of Contents|

 YANG Xiaocheng,FENG Jian,WU Xinwei,et al.Species Interaction Between Earthworms and Its Effect on Soil Nutrients in an Alpine Meadow, Northwestern Sichuan, China[J].Chinese Journal of Applied & Environmental Biology,2012,18(02):186-193.[doi:10.3724/SP.J.1145.2012.00186]





Species Interaction Between Earthworms and Its Effect on Soil Nutrients in an Alpine Meadow, Northwestern Sichuan, China
阳小成 冯坚 吴新卫 李国勇
(1成都理工大学材料与化学化工学院 成都 610059)
(2南京大学生物系 南京 210093)
(3中国科学院成都生物研究所生态恢复重点实验室 成都 610041)
YANG Xiaocheng FENG Jian WU Xinwei LI Guoyong
(1College of Material and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China)
(2Department of Biology, Nanjing University, Nanjing 210093, China)
(3ECORES Lab, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China)
Qinghai-Tibetan Plateau earthworm decomposition of yak dung soil nutrient alpine meadow
以川西北高寒草甸中普遍存在的两种蚯蚓(微小双胸蚓Bimastus parvus和威廉腔蚓Metaphire guillemi)为研究对象,采用野外微宇宙实验方法比较单独接种和混合接种时两种蚯蚓的数量、分布和繁殖状况,以及牛粪分解率和土壤养分含量的变化,探讨不同蚯蚓种群间的相互作用及其对土壤养分的影响. 结果发现:1)两种蚯蚓混合接种加快了牛粪分解,增加了下层(10~20 cm)土壤可溶性氮含量,但对牛粪分解速率和土壤可溶性氮含量均不存在交互作用;2)在混合接种处理中,微小双胸蚓的死亡比率显著高于威廉腔蚓的死亡比率;3)两种蚯蚓混合接种处理时,威廉腔蚓的繁殖明显受到抑制,而微小双胸蚓的幼蚓数量有所增加. 研究表明,威廉腔蚓和微小双胸蚓共存能够发生竞争性相互作用,加快地面上的牛粪分解,增加土壤可溶性氮含量,从而可能提高高寒草甸的初级生产力. 图7 表1 参33
Earthworms are regarded as one of the most important soil macro-invertebrate groups in the terrestrial ecosystem. In order to investigate the interspecific interaction between two earthworm species (Bimastus parvus and Metaphire guillemi) and the associated ecological consequences in an alpine meadow, northwestern Sichuan, China, a field-controlled experiment was conducted including four treatments (two single-species treatments, one mixed-species treatment and one control group without earthworm). The number of individuals, distribution, reproduction for each species, and the rate of yak dung decomposition and soil nutrient contents for each treatment were examined. It was found that the two earthworm species increased soil dissoluble nitrogen, and accelerated the yak dung decomposition in the mixed-species treatment, but the effect of the interaction between B. parvus and M. guillemi on soil dissoluble nitrogen and yak dung decomposition was not significant statistically. The mortality of B. parvus was significantly greater than that of M. guillemi in the mixed treatment. The presence of B. parvus significantly decreased the reproduction of M. guillemi. Conversely, the latter species might facilitate the reproduction of the former species as reflected by more offspring in the mixed treatment. In general, the competitive interaction between B. parvus and M. guillemi affected their respective population size and reproduction, and increased yak dung decomposition rate and soil dissoluble nitrogen content, which potentially contributed to the high primary production in the meadow. Fig 7, Tab 1, Ref 33


1 Jones CG, Lawton JH, Shachak M. Organisms as ecosystem engineers. Oikos, 1994, 69 (3): 373~386
2 Lee KE. Earthworms: Their Ecology and Relationships with Soils and Land Use. Sydney, Australia: Academic Press, 1985
3 Eisenhauer N, Straube D, Johnson EA, Parkinson D, Scheu S. Exotic ecosystem engineers change the emergence of plants from the seed bank of a deciduous forest. Ecosystems, 2009, 12 (6): 1008~1016
4 Samaranayake JWK, Wijekoon SJ. Effect of selected earthworms on soil fertility, plant growth and vermicomposting. Trop Agric Res & Extension, 2010, 13 (2): 33~40
5 Jongmans AG, Pulleman MM, Balabane M, Oort FV, Marinissen JCY. Soil structure and characteristics of organic matter in two orchards differing in earthworm activity. Appl Soil Ecol, 2003, 24 (3): 219~232
6 Eisen G. Researches in American Oligochaeta, with especial reference to those to the Paci?c Coast and adjacent islands. Proc Calif Acad Sci Ⅱ, 1900, 85~276
7 Beddard FE. Earthworms and Their Allies. Cambridge, UK: The University Press, 1912
8 Scheu S, Parkinson D. Effects of earthworms on nutrient dynamics, carbon turnover and microorganisms in soils from cool temperate forests of Canadian Rocky Mountains-laboratory studies. Appl Soil Ecol, 1994, 1 (2): 113~125
9 Lavelle P, Brussaard L, Hendrix P. Earthworm Management in Tropical Agroecosystems. Oxon, UK: CABI Publishing, 1999. 300
10 Zhang WX, Hendrix PF, Snyder BA, Molina M, Li JX, Rao XQ, Siemann E, Fu SL. Dietary flexibility aids Asian earthworm invasion in North American forests. Ecology, 2010, 91 (7): 2070~2079
11 Frelich LE, Hale CM, Scheu S, Holdsworth AR, Heneghan L, Bohlen PJ, Reich PB. Earthworm invasion into previously earthworm-free temperate boreal forests. Biol Invasions, 2006, 8 (6): 1235~1245
12 Hale CM, Frelich LE, Reich PB, Pastor J. Exotic earthworm effects on hardwood forest floor, nutrient availability and native plants: A mesocosm study. Oecologia, 2008, 155 (3): 509~518
13 Lardy LC, Brauman A, Bernard L, Pablo AL, Toucer J, Mano MJ, Weber L, Bruner D, Razafimbelo T, Chotte JL, Blanchart E. Effect of the endogeic earthworm Pontoscolex corethrurus on the microbial structure and activity related to CO2 and N2O fluxes from a tropical soil (Madagascar). Appl Soil Ecol, 2010, 45 (3): 201~208
14 Salmon S. The impact of earthworms on the abundance of Collembola: Improvement of food resources or of habitat? Biol & Fert Soils, 2004, 40 (5): 323~333
15 Eriksen-Hamel NS, Whalen JK. Competitive interactions affect the growth of Aporrectodea caliginosa and Lumbricus terrestris (Oligochaeta: Lumbricidae) in single- and mixed-species laboratory cultures. Eur J Soil Biol, 2007, 43 (3): 142~150
16 Asshoff R, Scheu S, Eisenhauer N. Different earthworm ecological groups interactively impact seeding establishment. Eur J Soil Biol, 2010, 46 (5): 330~334
17 Xia L, Szlavecz K, Swan CM, Burgess JL. Inter- and intra-specific interactions of Lumbricus rubellus (Hoffmeister, 1843) and Octolasion lacteum (örley, 1881) (Lumbricidae) and the implication for C cycling. Soil Biol & Biochem, 2011, 43 (7): 1584~1590
18 Yuan YB (袁一斌), Mu JP (慕军鹏), Peng YH (彭幼红), Sun SC (孙书存). Comparative study on flower trait, pollinator visitation rate and seed production of two Pedicularis species. Chin J Appl Environ Biol (应用与环境生物学报), 2011, 17 (4): 467~472
19 Shuster WD, Subler S, McCoy EL. The in?uence of earthworm community structure on the distribution and movement of solutes in a chisel-tilled soil. Appl Soil Ecol, 2002, 21 (2): 159~167
20 Winsome T, Epstein L, Hendrix PF, Horwath WR. Competitive interactions between native and exotic earthworm species as in?uenced by habitat quality in a California grassland. Appl Soil Ecol, 2006, 32 (1): 38~53
21 Holter P. An experiment on dung removal by Aphodius larvae (Scarabaeidae) and earthworms. Oikos, 1977, 28 (1): 130~136
22 Barley KP. The influence of earthworms on soil fertility. II. Consumption of soil and organic matter by the earthworm Allolobophora caliginosa (Savigny). Austr J Agric Res, 1959, 10 (2): 179~185
23 Holter P. Food utilization of dung-eating Aphodius larvae (Scarabaeidae). Oikos, 1974, 25 (1): 71~79
24 Lachnicht SL, Hendrixa PF. Interaction of the earthworm Diplocardia mississippiensis (Megascolecidae) with microbial and nutrient dynamics in a subtropical spodosol. Soil Biol & Biochem, 2001, 33 (10): 1411~1417
25 Scheu S. The influence of earthworms (Lumbricidae) on the nitrogen dynamics in the soil litter system of a deciduous forest. Oecologia, 1987, 72 (2): 197~201
26 Scheu S, Parkinson D. Changes in bacterial and fungal biomass C, bacterial and fungal biovolume and ergosterol content after drying, remoistening and incubation of different layers of cool temperate forest soils. Soil Biol & Biochem, 1994, 26 (11): 1515~1525
27 Domínguez J, Bohlen PJ, Parmelee RW. Earthworms increase nitrogen leaching to greater soil depths in row crop agroecosystems. Ecosystems, 2004, 7 (6): 672~685
28 Hale CM, Frelich LE, Reich PB. Changes in hardwood forest understory plant communities in response to European earthworm invasions. Ecology, 2006, 87 (7): 1637~1649
29 Bohlen PJ, Scheu S, Hale CM, McLean MA, Migge S, Groffman PM. Non-native invasive earthworms as agents of change in northern temperate forests. Front Ecol Environ, 2004, 2 (8): 427~435
30 Burtelow AE, Bohlen PJ, Groffman PM. Influence of exotic earthworm invasion on soil organic matter, microbial biomass and denitrification potential in forest soils of the northeastern United States. Appl Soil Ecol, 1998, 9 (2): 197~202
31 Decaëns T, Rangel AF, Asakawa N, Thomas RJ. Carbon and nitrogen dynamics in ageing earthworm casts in grasslands of the eastern plains of Colombia. Biol & Fertil Soils, 1999, 30 (1): 20~28
32 Bossuyt H, Six J, Hendrix PF. Protection of soil carbon by microaggregates within earthworm casts. Soil Biol & Biochem, 2005, 37 (2): 251~258
33 Baker G, Carter P, Barrett V, Hirth J, Mele P, Gourley C. Does the deep-burrowing earthworm, Aporrectodea longa, compete with resident earthworm communities when introduced to pastures in south-eastern Australia. Eur J Soil Biol, 2002, 38 (1): 39~42


 Guo Yongcan,Wang Zhenzhong,Zhang Youmei,et al.STUDIES ON TOXICITY AND TOXICOLOGY OF HEAVY METALS TO EARTHWORMS IN POLLUTED SOILS[J].Chinese Journal of Applied & Environmental Biology,1996,2(02):132.
 Ding Shihua,Li Qingyi.PURIFICATION AND CHARACTERIZATION OF CHOLINESTERASE FROM EISENIA FOETIDA[J].Chinese Journal of Applied & Environmental Biology,1997,3(02):246.
 CHEN Wennian,WU Yan,WU Ning,et al.Changes in Community Biomass along Snow-melting Gradient in Alpine Meadow[J].Chinese Journal of Applied & Environmental Biology,2009,15(02):745.[doi:10.3724/SP.J.1145.2009.00745]
 FENG Xiaohu,ZHU Weihua,WU Hong,et al.Composition and Enzyme-producing Property of Cellulolytic Microbes in High Altitude Wetland of Zoige, China[J].Chinese Journal of Applied & Environmental Biology,2010,16(02):399.[doi:10.3724/SP.J.1145.2010.00399]
 WANG Bei,SUN Geng,LUO Peng,et al.Microbial Communities of Alpine Meadow Soil in the Eastern Qinghai-Tibetan Plateau Subjected to Experimental Warming and Grazing[J].Chinese Journal of Applied & Environmental Biology,2011,17(02):151.[doi:10.3724/SP.J.1145.2011.00151]
 LIU Lin,SUN Geng,WU Yan,et al.Effect of Seasonal Snow Cover on Soil Nitrogen Mineralization in an Alpine Meadow on the Eastern Tibetan Plateau[J].Chinese Journal of Applied & Environmental Biology,2011,17(02):453.[doi:10.3724/SP.J.1145.2011.00453]
 ZHENG Liping,LIN Yusuo,FENG Yanhong,et al.Toxic Effects of Chlordane and Mirex-contaminated Soil on Terrestrial Organisms[J].Chinese Journal of Applied & Environmental Biology,2012,18(02):93.[doi:10.3724/SP.J.1145.2012.00093]
 DING Dong,WANG Bochan,CHEN Guichen,et al.Identification and Bioactivity of an Antitumor Actinomycete[J].Chinese Journal of Applied & Environmental Biology,2012,18(02):983.[doi:10.3724/SP.J.1145.2012.00983]
 MOU Chengxiang,SUN Geng,LUO Peng,et al.Flowering Responses of Alpine Meadow Plant in the Qinghai-Tibetan Plateau to Extreme Drought Imposed in Different Periods[J].Chinese Journal of Applied & Environmental Biology,2013,19(02):272.[doi:10.3724/SP.J.1145.2013.00272]
 REN Ze,JIANG Zuyao,CAI Qinghua.Nitrogen and Organic Carbon and Their Relationship in Streams of Qinghai-Tibet Plateau Hinterland[J].Chinese Journal of Applied & Environmental Biology,2013,19(02):532.[doi:10.3724/SP.J.1145.2013.00532]


中国科学院知识创新工程重要方向性项目(No. KSCX2-EW-J-22)和国家自然科学基金项目(No. 31100387)资助
更新日期/Last Update: 2012-04-27