|本期目录/Table of Contents|

[1]张雅舒,张礼霞,李大平.微生物燃料电池还原二氧化铅及产电研究[J].应用与环境生物学报,2012,18(05):780-784.[doi:10.3724/SP.J.1145.2012.00780]
 ZHANG Yashu,ZHANG Lixia,LI Daping.Simultaneous Reduction of Lead Dioxide and Improvement of Bioelectricity Production in Microbial Fuel Cell[J].Chinese Journal of Applied & Environmental Biology,2012,18(05):780-784.[doi:10.3724/SP.J.1145.2012.00780]
点击复制

微生物燃料电池还原二氧化铅及产电研究()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
18卷
期数:
2012年05期
页码:
780-784
栏目:
研究论文
出版日期:
2012-10-25

文章信息/Info

Title:
Simultaneous Reduction of Lead Dioxide and Improvement of Bioelectricity Production in Microbial Fuel Cell
作者:
张雅舒张礼霞李大平
(1中国科学院环境与应用微生物重点实验室 成都 610041)
(2环境微生物四川省重点实验室 成都 610041)
(3中国科学院大学 北京 100049)
Author(s):
ZHANG Yashu ZHANG Lixia LI Daping
(1Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China)
(2Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China)
(3University of Chinese Academy of Sciences, Beijing 100049, China)
关键词:
钛基二氧化铅微生物燃料电池电沉积生物电还原
Keywords:
titanium-based lead dioxide microbial fuel cell electrodeposition bioelectricity reduction
分类号:
TM911.45
DOI:
10.3724/SP.J.1145.2012.00780
文献标志码:
A
摘要:
为探究二氧化铅在微生物燃料电池(Microbial fuel cell,简称MFC)中的还原及对产电性能的影响,采用电沉积法成功制备了钛基二氧化铅(PbO2/Ti),并将其作为阴极材料应用于双室MFC. 二氧化铅的价态、晶型、形态特征以及电化学特性分别采用X射线光电子能谱(XPS)、X射线衍射光谱(XRD)、扫描电子显微镜(SEM)和循环伏安扫描(CV)进行分析,MFC的产电能力通过COD的去除、输出电压和极化曲线进行表征. 结果显示,在以PbO2/Ti为阴极的MFC中COD的降解率可以达到87.68%,明显高于纯钛板的对照(71.4 %). 当外阻为1 000 Ω时,最大输出电压达到760 mV,约为对照的30倍. 最大功率密度达379 mW m –2,相应的电流密度为1 185 mA m –2. 同时,PbO2被还原为PbO和Pb3(PO4)2. 由此可见,二氧化铅由于其具有的强氧化性可作为廉价高效的阴极材料应用于MFC,从而大大提高MFC产电能力. 图7 参28
Abstract:
In order to research the influences of lead dioxide (PbO2) on reduction and electrogenesis capacity in microbial fuel cell (MFC), titanium-based lead dioxide (PbO2/Ti) was prepared via an electrodeposition technique and applied in a double-chamber MFC as the cathode material. The valence state, crystal form, morphological character and electrochemical properties of PbO2 were analyzed by X-ray photoelectron spectroscopy (XPS), X-ray diffraction spectrum (XRD), scanning electron microscope (SEM) and cyclic voltammetry (CV), respectively. Bioelectricity generation of the MFC was evaluated by removal rate of chemical oxygen demand (COD), voltage output and polarization curve measurement. The results showed that COD removal rate was greater in PbO2/Ti-based MFC (87.68%) than that in Ti-based MFC (71.4%). The voltage output in the former reached 760 mV with an external resistance of 1 000 Ω, which was 30 times higher than that in the control case. The maximum power density of PbO2/Ti-based MFC was 379 mW m–2 at a current density of 1 185 mA m–2. Meanwhile, it was proved that PbO2 was reduced into PbO and Pb3(PO4)2. In conclusion, PbO2 with its strong oxidizing property could be used as cheap and efficient cathode material in MFC, greatly improving the capacity of electricity production. Fig 7, Ref 28

参考文献/References:

1 Liu H, Logan BE. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol, 2004, 38 (14): 4040~4046
2 Catal T, Li K, Bermek H, Liu H. Electricity production from twelve monosaccharides using microbial fuel cells. J Power Sources, 2008, 175 (1): 196~200
3 Behera M, Jana PS, More TT, Ghangrekar MM. Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH. Bioelectrochemistry, 2010, 79 (2): 228~233
4 Rabaey K, Lissens G, Siciliano SD, Verstraete W. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett, 2003, 25: 1531~1535
5 Aelterman P, Rabaey K, Pham H, Boon N, Verstraete W. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol, 2006, 40 (10): 3388~3394
6 Li DL (李登兰), Hong YG (洪义国), Xu MY (许玫英), Luo HD (罗慧东), Sun GP (孙国萍). Progress in construction of microbial fuel cell. Chin J Appl Environ Biol (应用与环境生物学报), 2008, 14 (1): 147~152
7 Roche I, Katuri K, Scott K. A microbial fuel cell using manganese oxide oxygen reduction catalysts. J Appl Electrochem 2010, 40 (1): 13~21
8 Huang L, Chen J, Quan X, Yang F. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell. Bioprocess Biosyst Eng, 2010, 33: 937~945
9 Heijne AT, Liu F, Weijden RVD, Weijma J, Buisman CJN, Hamelers HVM. Copper recovery combined with electricity production in a microbial fuel cells. Environ Sci Technol, 2010, 44 (11): 4376~4381
10 Oh S, Min B, Logan BE. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ Sci Technol, 2004, 38 (18): 4900~4904
11 You S, Zhao Q, Zhang J, Jiang J, Zhao S. A microbial fuel cell using permanganate as the cathodic electron acceptor. J Power Sources, 2006, 162: 1409~1415
12 Tartakovsky B, Guiot SR. A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors. Biotechnol Progr, 2006, 22 (1): 241~246
13 Amutha R, Josiah JJM, Adriel JJ, Jagannathan P, Berchmans S. Chromium hexacyanoferrate as a cathode material in microbial fuel cells. J Appl Electrochem, 2010, 40 (11): 1985~1990
14 Clauwaert P, Rabaey K, Aelterman P, Schamphelaire LD. Biological denitrification in microbial fuel cells. Environ Sci Technol, 2007, 41 (9): 3354~3360
15 Lovley DR, Phillips EJP. Novel mode of microbial energy metabolism organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microb, 1988, 54 (6): 1472~1480
16 Logan BE, Cheng S, Watson V, Estadt G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol, 2007, 41 (9): 3341~3346
17 Logan BE, Hamelers B, Rozendal R, Schroder U. Microbial fuel cells-methodology and technology. Environ Sci Technol, 2006, 40 (17): 5181~5192
18 Zhou MH, Dai QZ, Lei LC, Ma CA, Wang DH. Long life modified lead dioxide anode for organic wastewater treatment electrochemical characteristics and degradation mechanism. Environ Sci Technol, 2005, 39 (1): 363~370
19 Velichenko AB, Amadelli R, Baranova EA, Girenko DV, Danilov FI. Electrodeposition of co-doped lead dioxide and its physicochemical. J Electroanal Chem, 2002, 527: 56~64
20 Morris JM, Jin S, Wang J, Zhu C, Urynowicz M A. Lead dioxide as an alternative catalyst to platinum in microbial fuel cells. Electrochem Commun, 2007, 9 (7): 1730~1734
21 Xie T (谢天), Wang B (王斌). Review on preparation method of lead dioxide electrode. J Chengdu Univ.Nat Sci Ed (成都大学学报自然科学版), 2003, 22 (3): 25~30
22 Hyde ME, Jacobs RMJ, Compton RG. An AFM study of the correlation of lead dioxideelectrocatalytic activity with observed morphology. J Phys Chem B, 2004, 108: 6381~6390
23 Velichenko AB, Amadelli R, Zucchini GL, Girenko DV, Danilov FI. Electrosynthesis and physicochemical properties of Fe-doped lead dioxide electrocatalysts. Electrochim Acta, 2000, 45: 4341~4350
24 Devilliers D, Dinh TMT, Mahé E, Dauriac V, Lequeux N. Electroanalytical investigations on electrodeposited lead dioxide. J Electroanal Chem, 2004, 573 (2): 227~239
25 Yu N, Gao L, Zhao S, Wang Z. Electrodeposited PbO2 thin film as positive electrode in PbO2/AC hybrid capacitor. Electrochim Acta, 2009, 54 (14): 3835~3841
26 Shao ZG (邵志刚), Yi BL (衣宝廉), Zhang GX (张新革), Zhang EJ (张恩浚). Preparation of PbO2/Ti plate electrode. Electrochemistry (电化学), 1997, 3 (3): 319~324
27 Wang JQ (汪家权), Li C (李晨), Tan Q (谭茜). Wastewater treatment by single-chamber microbial cell using lead dioxide as the cathode. Technol Water Treatment (水处理技术), 2009, 35 (9): 84~86
28 Ding WW (丁巍巍), Wang JQ (汪家权), Lü J (吕剑) , Xia XL (夏雪兰). Treatment of phenol wasterwater with microbial fuel cells. J Hefei Univ. Technol. (合肥工业大学学报), 2010, 33 (1): 94~97

相似文献/References:

[1]李登兰,洪义国,许玫英,等.微生物燃料电池构造研究进展[J].应用与环境生物学报,2008,14(01):147.
 LI Denglan,et al..Progress in Construction of Microbial Fuel Cell[J].Chinese Journal of Applied & Environmental Biology,2008,14(05):147.
[2]崔旸,苏文涛,高平,等.还原性硫化物微生物燃料电池偶联偶氮染料降解[J].应用与环境生物学报,2012,18(06):978.[doi:10.3724/SP.J.1145.2012.00978]
 CUI Yang,SU Wentao,GAO Ping,et al.Microbial Fuel Cell Coupled Bio-oxidation of Reducing Sulfide with Degradation of Azo Dyes[J].Chinese Journal of Applied & Environmental Biology,2012,18(05):978.[doi:10.3724/SP.J.1145.2012.00978]
[3]郭静,徐自祥,付亚星,等.产电微生物基因组及代谢网络分析[J].应用与环境生物学报,2012,18(06):1075.[doi:10.3724/SP.J.1145.2012.01075]
 GUO Jing,XU Zixiang,FU Yaxing,et al.Analysis on Electricigen Genomes and Metabolic Networks[J].Chinese Journal of Applied & Environmental Biology,2012,18(05):1075.[doi:10.3724/SP.J.1145.2012.01075]
[4]刘柯,李大平,王娟.尿液微生物燃料电池研究[J].应用与环境生物学报,2015,21(01):36.[doi:10.3724/SP.J.1145.2014.03030]
 LIU Ke,LI Daping,WANG Juan.Study on urine microbial fuel cell[J].Chinese Journal of Applied & Environmental Biology,2015,21(05):36.[doi:10.3724/SP.J.1145.2014.03030]
[5]华涛,李胜男,周启星,等.生物电化学系统3种典型构型及其应用研究进展[J].应用与环境生物学报,2018,24(03):663.[doi:10.19675/j.cnki.1006-687x.2017.08046]
 HUA Tao,LI Shengnan,ZHOU Qixing,et al.Recent advances in three typical configurations and applications of bioelectrochemical systems[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):663.[doi:10.19675/j.cnki.1006-687x.2017.08046]
[6]蒋沁芮,李泽华,杨暖,等.三维电极微生物燃料电池处理生活污水同步产电性能[J].应用与环境生物学报,2018,24(04):873.[doi:10.19675/j.cnki.1006-687x.2017.11011]
 JIANG Qinrui,LI Zehua,et al.Microbial fuel cell with three-dimensional electrodes for domestic wastewater treatment and electricity generation[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):873.[doi:10.19675/j.cnki.1006-687x.2017.11011]
[7]倪宏宇航,弓雨欣,李祥锴.微生物燃料电池阳极电极的新型材料与修饰方法[J].应用与环境生物学报,2019,25(04):999.[doi:10.19675/j.cnki.1006-687x.2018.12022]
 NI Hongyuhang,GONG Yuxin & LI Xiangkai**.Application of recent modification methods and materials in microbial fuel cell anode electrodes[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):999.[doi:10.19675/j.cnki.1006-687x.2018.12022]

备注/Memo

备注/Memo:
国家自然科学基金项目(Nos. 31000070,51074149)资助
更新日期/Last Update: 2012-10-26