|本期目录/Table of Contents|

[1]许炳雯,李诗阳,张强,等.细菌芳烃外二醇双加氧酶研究进展[J].应用与环境生物学报,2012,18(05):873-879.[doi:10.3724/SP.J.1145.2012.00873]
 XU Bingwen,LI Shiyang,ZHANG Qiang,et al.Advance in Research on Bacterial Aromatic Extradiol Dioxygenase[J].Chinese Journal of Applied & Environmental Biology,2012,18(05):873-879.[doi:10.3724/SP.J.1145.2012.00873]
点击复制

细菌芳烃外二醇双加氧酶研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
18卷
期数:
2012年05期
页码:
873-879
栏目:
综述
出版日期:
2012-10-25

文章信息/Info

Title:
Advance in Research on Bacterial Aromatic Extradiol Dioxygenase
作者:
许炳雯李诗阳张强曲媛媛马桥李新亮周集体张旭旺周豪
(大连理工大学环境学院,工业生态与环境工程教育部重点实验室 大连 116024)
Author(s):
XU Bingwen LI Shiyang ZHANG Qiang QU Yuanyuan MA Qiao LI Xinliang ZHOU Jiti ZHANG Xuwang ZHOU Hao
(Key Laboratory of Industrial Ecology and Environmental Engineering of Ministry of Eduction, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China)
关键词:
外二醇双加氧酶分类催化机制生物降解生物合成生物技术
Keywords:
extradiol dioxygenase classification catalytic mechanism biodegradation biosynthesis biotechnology
分类号:
Q544 : Q939.97
DOI:
10.3724/SP.J.1145.2012.00873
文献标志码:
A
摘要:
外二醇双加氧酶(EDOs)是一种多功能细菌芳烃开环氧化酶,在环境保护、化工合成及生物技术等领域中有着巨大的应用潜力. 本文综述了EDOs自开发以来的研究成果,包括分类学研究,酶的催化机制,在生物降解、生物合成、生物技术中的应用及其开发改造新技术. EDOs属于3个进化关系相互独立的酶家族,它们利用活性位点金属离子Fe/Mn(II)与底物和氧气结合,通过形成一种烷基过氧化中间产物,使芳香化合物开环断裂. 利用这一催化机制,EDOs可以广泛地降解多种环境污染物,同时,某些EDOs还能够参与生物活性物质的合成,并且在生物传感器等生物技术中也有着广泛的应用. 近年来,结合宏基因组、杂交酶等技术手段,研究人员开发改造出更多的EDOs资源,旨在为EDOs的深入研究提供更全面的信息. 图5 参32
Abstract:
As a type of bacterial aromatic ring-cleavage enzymes with versatile functions, extradiol dioxygenases (EDOs) have broad application in the field of environmental protection, chemical synthesis and biotechnologies. This paper reviewed the achievements of EDOs researches including the studies on their classification, catalytic mechanism, the application in biodegradation, biosynthesis, biotechnologies and the novel methods for extracting and modify EDOs. EDOs belong to three evolutionarily independent families, which utilize Fe(II) or Mn(II) as metal ions to catalyze the oxygenolytic fission of aromatic compounds via iron-alkylperoxo intermediates by the incorporation of substrates and O2. Through this mechanism, EDOs possess broad substrates spectra, and often take part in the biosynthesis of active compounds. Meanwhile, EDOs play an important role in the biotechnology such as biosensors. Recently, combined with the technology of metagenomic, hybrid enzymes, more and more EDOs were extracted and modified to provide a general message for the in depth study of EDOs. Fig 5, Ref 32

参考文献/References:

Vaillancourt FH, Barbosa CJ, Spiro TG, Bolin JT, Blades MW, Turner RF, Eltis LD. Definitive evidence for monoanionic binding of 2,3-dihydroxybiphenyl to 2,3-dihydroxybiphenyl 1,2-dioxygenase from UV resonance Raman spectroscopy, UV/Vis absorption spectroscopy, and crystallography. J Am Chem Soc, 2002, 124: 2485~2496
Lee NR, Kwon DY, Min KH. Cloning and sequence analyses of a 2,3-dihydroxybiphenyl 1,2-dioxygenase gene (bphC) from Comamonas sp. SMN4 for phylogenetic and structural analysis. J Ind Microbiol Biotechnol, 2003, 30: 245~250
Brennerova MV, Josefiova J, Brenner V, Pieper DH, Junca H. Metagenomics reveals diversity and abundance of meta-cleavage pathways in microbial communities from soil highly contaminated with jet fuel under air-sparging bioremediation. Environ Microbiol, 2009, 11 (9): 2216~2227
Shigeaki H, Monique R. Bacterial aromatic ring-cleavage enzymes are classified into two different gene families. J Biol Chem, 1989, 264 (26): 15328~15333
Eltis LD, Bolin JT. Evolutionary relationships among extradiol dioxygenases. J Bacteriol, 1996, 178 (20): 5930~5937
Dunwell JM, Culham A, Carter CE, Sosa-Aguirre CR, Goodenough PW. Evolution of functional diversity in the cupinsuperfamily. Trends Biochem Sci, 2001, 26: 740~746
Vaillancourt FH, Bolin JT, Eltis LD. The ins and outs of ring-cleaving dioxygenases. Crit Rev Biochem Mol, 2006, 41: 241~267
Arciero DM, Lipscomb JD. Binding of 17O-labeled substrate and inhibitors to protocatechuate 4,5-dioxygenase-nitrosyl complex. Evidence for direct substrate binding to the active site Fe2+ of extradiol dioxygenases. J Biol Chem, 1986, 261: 2170~2178
Shu L, Chiou YM, Orville AM, Miller MA, Lipscomb JD, Que LJ. X-ray absorption spectroscopic studies of the Fe(II) active site of catechol 2,3-dioxygenase. Implications for the extradiol cleavage mechanism. Biochemistry, 1995, 34: 6649~6659
Sanvoisin J, Langley GJ, Bugg TDH. Mechanism of extradiol catechol dioxygenases: Evidence for a lactone intermediate in the 2,3-dihydroxyphenylpropionate 1,2-dioxygenase reaction. J Am Chem Soc, 1995, 117: 7836~7837
Senda T, Sugiyama K, Narita H, Yamamoto T, Kimbara K, Fukuda M, Sato M, Yano K, Mitsui Y. Three-dimensional structures of free form and two substrate complexes of an extradiol ring-cleavage type dioxygenase, the BphC enzyme from Pseudomonas sp. strain KKS102. J Mol Biol, 1996, 255: 735~752
Han S, Eltis LD, Timmis KN, Muchmore SW, Bolin JT. Crystal structure of the biphenyl-cleaving extradiol dioxygenase from a PCB-degrading pseudomonad. Science, 1995, 270: 976~980
Kovaleva EG, Lipscomb JD. Crystal structures of Fe2+ dioxygenase superoxo, alkylperoxo, and bound product intermediates. Science, 2007, 316: 453~457
Mendel S, Arndt A, Bugg TDH. Acid-base catalysis in the extradiol catechol dioxygenase reaction mechanism: site-directed mutagenesis of His-115 and His-179 in Escherichia coli 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB). Biochemistry, 2004, 43: 13390~13396
Kovaleva EG, Lipscomb JD. Versatility of biological non-heme Fe(II) centers in oxygen activation reactions. Nat Chem Biol, 2008, 4: 186~193
Lipscomb JDz. Mechanism of extradiol aromatic ring-cleaving dioxygenases. Curr Opin Struct Biol, 2008, 18 (6): 644~649
Ren HS (任河山), Wang Y (王颖), Zhao HB (赵化冰), Cai BL (蔡宝立). Isolation and identification of phenol-degrading strains and the application in biotreatment of phenol-containing waste water. Environ Sci (环境科学), 2008, 29 (2): 482~487
Timmis KN, Steffan RJ, Unterman R. Designing microorganisms for the treatment of toxic wastes. Annu Rev Microbiol, 1994, 48: 525~557
Fortin PD, Macpherson I, Neau DB, Bolin JT, Eltis LD. Directed evolution of a ring-cleaving dioxygenase for polychlorinated biphenyl degradation. J Biol Chem, 2005, 280: 42307~42314
Wei J, Zhou Y, Xu T, Lu B. Rational design of catechol-2,3-dioxygenase for improving the enzyme characteristics. Appl Biochem Biotechnol, 2000, 162 (2): 116~126
Girod PA, Zryd JP. Biogenesis of betalains: Purification and partial characterization of Dopa 4,5-dioxygenase from Amanita muscaria. Phytochemistry, 1991, 30: 169~174
Terradas F, Wyler H. The Secodopas, natural pigments in Hygrocybe conica and Amanita muscaria. Phytochemistry, 1991, 30: 3251~3253
Christinet L, Burdet FX, Zaiko M, Hinz U, Zryd JP. Characterization and functional identi?cation of a novel plant 4,5-extradiol dioxygenase involved in betalain pigment biosynthesis in Portulaca grandi?ora. Plant Physiol, 2004, 134: 265~274
Novotna J, Honzatko A, Bednar P, Kopecky J, Janata J, Spizek J. L-3,4-dihydroxyphenyl alanine-extradiol cleavage is followed by intramolecular cyclization in lincomycin biosynthesis. Eur J Biochem, 2004, 271: 3678~3683
Xia DX (夏东翔), Wang MX (汪美先). 邻苯二酚2,3-双加氧酶显色标志基因研究进展. Appl Biotechnol (生物工程进展), 1993, 13 (6): 26~29
Lü P (吕鹏), Shi JG (史建国), Feng D (冯东), Zhuang Z (庄重), Wang JC (王建传), Lin JY (凌建亚), Zhang CK (张长铠). Studies on the catechol dioxygenase sensor. China Environ Sci (中国环境科学), 2005, 25 (4): 491~493
Zhang Q, Qu YY, Zhang XW, Zhou JT, Wang HT, Extradiol dioxygenase-SiO2 sol-gel modified electrode for catechol and its derivatives detection. Biosens Bioelectron, 2011, 26: 4362~4367
Liu ZP (刘志培), Yang HF (杨惠芳), Zhou PJ (周培谨). Characteristics and metabolism pathway of microbial degradation of aniline. Chin J Appl Environ Biol (应用与环境生物学报), 1999, 5 (Suppl): 9~13
Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev, 1995, 59 (1): 143~169
Okuta A, Ohnishi K, Harayama S. PCR isolation of catechol 2,3-dioxygenase gene fragments from environmental samples and their assembly into functional genes. Gene, 1998, 212 (2): 221~228
Du LQ (杜丽琴), Pang H (庞浩), Hu YY (胡媛媛), Wei YT (韦宇拓), Huang RB (黄日波). Metagenomic analysis of microbes from sucrose-enriched environment and cloning of sucrose hydrolase genes. Chin J Appl Environ Biol (应用与环境生物学报), 2010, 16 (3): 403~407
Suenaga H, Mizuta S, Miyazaki K. The molecular basis foradaptive evolution in novel extradiol dioxygenases retrieved from the metagenome. FEMS Microbiol Ecol, 2009, 69: 472~480

相似文献/References:

[1]姚竹云,张肇铭.几株光合细菌的表型特征及DNA-NDA同源性分析[J].应用与环境生物学报,1996,2(01):84.
 Yao Zhuyun,Zhang Zhaoming.PHENOTYPIC FEATURES AND DNA-DNA HOMOLOGY ANALYSES OF SOME PHOTOSYNTHETIC BACTERIA[J].Chinese Journal of Applied & Environmental Biology,1996,2(05):84.
[2]孔宪需.中国黑钻鳞耳蕨组(耳蕨属)的研究[J].应用与环境生物学报,1997,3(02):132.
 Kung Hsian Shiu(Kong Xianxu).TAXONOMICAL STUDY ON SECT. XIPHOPOLYSTICHUM DAIGOBO (POLYSTICHUM) FROM CHINA[J].Chinese Journal of Applied & Environmental Biology,1997,3(05):132.
[3]王素英,陈文新.多位点酶电泳在黄芪根瘤菌分类中的应用[J].应用与环境生物学报,1997,3(03):268.
 Wang Suying,Chen Wenxin.METHOD OF MULTILOCUS ENZYME ELECTROPHORESIS AND ITS APPLICATION IN CLSSIFICATION OF RHIZOBIA ISOLATED FROM ASTRACALUS SPP[J].Chinese Journal of Applied & Environmental Biology,1997,3(05):268.
[4]黎怀成,徐波,高信芬.国产山蚂蝗属植物花粉形态及其分类意义[J].应用与环境生物学报,2018,24(06):1330.[doi:10.19675/j.cnki.1006-687x.2018.03005]
 LI Huaicheng,et al..Pollen morphology and its taxonomic significance for Desmodium Desv. in China[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):1330.[doi:10.19675/j.cnki.1006-687x.2018.03005]

备注/Memo

备注/Memo:
国家自然科学基金项目(Nos. 51078054,20923006)资助
更新日期/Last Update: 2012-10-26