Vaillancourt FH, Barbosa CJ, Spiro TG, Bolin JT, Blades MW, Turner RF, Eltis LD. Definitive evidence for monoanionic binding of 2,3-dihydroxybiphenyl to 2,3-dihydroxybiphenyl 1,2-dioxygenase from UV resonance Raman spectroscopy, UV/Vis absorption spectroscopy, and crystallography. J Am Chem Soc, 2002, 124: 2485~2496
Lee NR, Kwon DY, Min KH. Cloning and sequence analyses of a 2,3-dihydroxybiphenyl 1,2-dioxygenase gene (bphC) from Comamonas sp. SMN4 for phylogenetic and structural analysis. J Ind Microbiol Biotechnol, 2003, 30: 245~250
Brennerova MV, Josefiova J, Brenner V, Pieper DH, Junca H. Metagenomics reveals diversity and abundance of meta-cleavage pathways in microbial communities from soil highly contaminated with jet fuel under air-sparging bioremediation. Environ Microbiol, 2009, 11 (9): 2216~2227
Shigeaki H, Monique R. Bacterial aromatic ring-cleavage enzymes are classified into two different gene families. J Biol Chem, 1989, 264 (26): 15328~15333
Eltis LD, Bolin JT. Evolutionary relationships among extradiol dioxygenases. J Bacteriol, 1996, 178 (20): 5930~5937
Dunwell JM, Culham A, Carter CE, Sosa-Aguirre CR, Goodenough PW. Evolution of functional diversity in the cupinsuperfamily. Trends Biochem Sci, 2001, 26: 740~746
Vaillancourt FH, Bolin JT, Eltis LD. The ins and outs of ring-cleaving dioxygenases. Crit Rev Biochem Mol, 2006, 41: 241~267
Arciero DM, Lipscomb JD. Binding of 17O-labeled substrate and inhibitors to protocatechuate 4,5-dioxygenase-nitrosyl complex. Evidence for direct substrate binding to the active site Fe2+ of extradiol dioxygenases. J Biol Chem, 1986, 261: 2170~2178
Shu L, Chiou YM, Orville AM, Miller MA, Lipscomb JD, Que LJ. X-ray absorption spectroscopic studies of the Fe(II) active site of catechol 2,3-dioxygenase. Implications for the extradiol cleavage mechanism. Biochemistry, 1995, 34: 6649~6659
Sanvoisin J, Langley GJ, Bugg TDH. Mechanism of extradiol catechol dioxygenases: Evidence for a lactone intermediate in the 2,3-dihydroxyphenylpropionate 1,2-dioxygenase reaction. J Am Chem Soc, 1995, 117: 7836~7837
Senda T, Sugiyama K, Narita H, Yamamoto T, Kimbara K, Fukuda M, Sato M, Yano K, Mitsui Y. Three-dimensional structures of free form and two substrate complexes of an extradiol ring-cleavage type dioxygenase, the BphC enzyme from Pseudomonas sp. strain KKS102. J Mol Biol, 1996, 255: 735~752
Han S, Eltis LD, Timmis KN, Muchmore SW, Bolin JT. Crystal structure of the biphenyl-cleaving extradiol dioxygenase from a PCB-degrading pseudomonad. Science, 1995, 270: 976~980
Kovaleva EG, Lipscomb JD. Crystal structures of Fe2+ dioxygenase superoxo, alkylperoxo, and bound product intermediates. Science, 2007, 316: 453~457
Mendel S, Arndt A, Bugg TDH. Acid-base catalysis in the extradiol catechol dioxygenase reaction mechanism: site-directed mutagenesis of His-115 and His-179 in Escherichia coli 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB). Biochemistry, 2004, 43: 13390~13396
Kovaleva EG, Lipscomb JD. Versatility of biological non-heme Fe(II) centers in oxygen activation reactions. Nat Chem Biol, 2008, 4: 186~193
Lipscomb JDz. Mechanism of extradiol aromatic ring-cleaving dioxygenases. Curr Opin Struct Biol, 2008, 18 (6): 644~649
Ren HS (任河山), Wang Y (王颖), Zhao HB (赵化冰), Cai BL (蔡宝立). Isolation and identification of phenol-degrading strains and the application in biotreatment of phenol-containing waste water. Environ Sci (环境科学), 2008, 29 (2): 482~487
Timmis KN, Steffan RJ, Unterman R. Designing microorganisms for the treatment of toxic wastes. Annu Rev Microbiol, 1994, 48: 525~557
Fortin PD, Macpherson I, Neau DB, Bolin JT, Eltis LD. Directed evolution of a ring-cleaving dioxygenase for polychlorinated biphenyl degradation. J Biol Chem, 2005, 280: 42307~42314
Wei J, Zhou Y, Xu T, Lu B. Rational design of catechol-2,3-dioxygenase for improving the enzyme characteristics. Appl Biochem Biotechnol, 2000, 162 (2): 116~126
Girod PA, Zryd JP. Biogenesis of betalains: Purification and partial characterization of Dopa 4,5-dioxygenase from Amanita muscaria. Phytochemistry, 1991, 30: 169~174
Terradas F, Wyler H. The Secodopas, natural pigments in Hygrocybe conica and Amanita muscaria. Phytochemistry, 1991, 30: 3251~3253
Christinet L, Burdet FX, Zaiko M, Hinz U, Zryd JP. Characterization and functional identi?cation of a novel plant 4,5-extradiol dioxygenase involved in betalain pigment biosynthesis in Portulaca grandi?ora. Plant Physiol, 2004, 134: 265~274
Novotna J, Honzatko A, Bednar P, Kopecky J, Janata J, Spizek J. L-3,4-dihydroxyphenyl alanine-extradiol cleavage is followed by intramolecular cyclization in lincomycin biosynthesis. Eur J Biochem, 2004, 271: 3678~3683
Xia DX (夏东翔), Wang MX (汪美先). 邻苯二酚2,3-双加氧酶显色标志基因研究进展. Appl Biotechnol (生物工程进展), 1993, 13 (6): 26~29
Lü P (吕鹏), Shi JG (史建国), Feng D (冯东), Zhuang Z (庄重), Wang JC (王建传), Lin JY (凌建亚), Zhang CK (张长铠). Studies on the catechol dioxygenase sensor. China Environ Sci (中国环境科学), 2005, 25 (4): 491~493
Zhang Q, Qu YY, Zhang XW, Zhou JT, Wang HT, Extradiol dioxygenase-SiO2 sol-gel modified electrode for catechol and its derivatives detection. Biosens Bioelectron, 2011, 26: 4362~4367
Liu ZP (刘志培), Yang HF (杨惠芳), Zhou PJ (周培谨). Characteristics and metabolism pathway of microbial degradation of aniline. Chin J Appl Environ Biol (应用与环境生物学报), 1999, 5 (Suppl): 9~13
Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev, 1995, 59 (1): 143~169
Okuta A, Ohnishi K, Harayama S. PCR isolation of catechol 2,3-dioxygenase gene fragments from environmental samples and their assembly into functional genes. Gene, 1998, 212 (2): 221~228
Du LQ (杜丽琴), Pang H (庞浩), Hu YY (胡媛媛), Wei YT (韦宇拓), Huang RB (黄日波). Metagenomic analysis of microbes from sucrose-enriched environment and cloning of sucrose hydrolase genes. Chin J Appl Environ Biol (应用与环境生物学报), 2010, 16 (3): 403~407
Suenaga H, Mizuta S, Miyazaki K. The molecular basis foradaptive evolution in novel extradiol dioxygenases retrieved from the metagenome. FEMS Microbiol Ecol, 2009, 69: 472~480
[1]姚竹云,张肇铭.几株光合细菌的表型特征及DNA-NDA同源性分析[J].应用与环境生物学报,1996,2(01):84.
Yao Zhuyun,Zhang Zhaoming.PHENOTYPIC FEATURES AND DNA-DNA HOMOLOGY ANALYSES OF SOME PHOTOSYNTHETIC BACTERIA[J].Chinese Journal of Applied & Environmental Biology,1996,2(05):84.
[2]孔宪需.中国黑钻鳞耳蕨组(耳蕨属)的研究[J].应用与环境生物学报,1997,3(02):132.
Kung Hsian Shiu(Kong Xianxu).TAXONOMICAL STUDY ON SECT. XIPHOPOLYSTICHUM DAIGOBO (POLYSTICHUM) FROM CHINA[J].Chinese Journal of Applied & Environmental Biology,1997,3(05):132.
[3]王素英,陈文新.多位点酶电泳在黄芪根瘤菌分类中的应用[J].应用与环境生物学报,1997,3(03):268.
Wang Suying,Chen Wenxin.METHOD OF MULTILOCUS ENZYME ELECTROPHORESIS AND ITS APPLICATION IN CLSSIFICATION OF RHIZOBIA ISOLATED FROM ASTRACALUS SPP[J].Chinese Journal of Applied & Environmental Biology,1997,3(05):268.
[4]黎怀成,徐波,高信芬.国产山蚂蝗属植物花粉形态及其分类意义[J].应用与环境生物学报,2018,24(06):1330.[doi:10.19675/j.cnki.1006-687x.2018.03005]
LI Huaicheng,et al..Pollen morphology and its taxonomic significance for Desmodium Desv. in China[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):1330.[doi:10.19675/j.cnki.1006-687x.2018.03005]
[5]吴金芳,张雨潇,彭仁.红球菌的组学、遗传改造及其应用研究进展[J].应用与环境生物学报,2022,28(01):239.[doi:10.19675/j.cnki.1006-687x.2020.08036]
WU Jinfang,ZHANG Yuxiao & PENG Ren.Research advance in omics, genetic modification, and application of Rhodococcus[J].Chinese Journal of Applied & Environmental Biology,2022,28(05):239.[doi:10.19675/j.cnki.1006-687x.2020.08036]