|本期目录/Table of Contents|

[1]刘项羽,徐美娟,杨套伟,等.β-甘露聚糖酶基因在枯草芽孢杆菌中的克隆及表达[J].应用与环境生物学报,2012,18(04):672-677.[doi:10.3724/SP.J.1145.2012.00672]
 LIU Xiangyu,XU Meijuan,YANG taowei,et al.Cloning and Expression of β-mannanase Gene in Bacillus subtilis[J].Chinese Journal of Applied & Environmental Biology,2012,18(04):672-677.[doi:10.3724/SP.J.1145.2012.00672]
点击复制

β-甘露聚糖酶基因在枯草芽孢杆菌中的克隆及表达()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
18卷
期数:
2012年04期
页码:
672-677
栏目:
研究论文
出版日期:
2012-08-25

文章信息/Info

Title:
Cloning and Expression of β-mannanase Gene in Bacillus subtilis
作者:
刘项羽徐美娟杨套伟张显饶志明
(江南大学工业生物技术教育部重点实验室和江南大学应用微生物与代谢工程研究室 无锡 214122)
Author(s):
LIU XiangyuXU MeijuanYANG taoweiZHANG xianRAO zhiming
(Key Laboratory of Industrial Biotechnology, Ministry of Education; Laboratory of Applied Microorganisms and Metabolic Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China)
关键词:
β-甘露聚糖酶枯草芽孢杆菌信号肽克隆表达重组菌株酶学性质
Keywords:
β-mannanase Bacillus subtilis signal peptide clone expression recombinant strain enzyme property
分类号:
Q939.97 : Q78
DOI:
10.3724/SP.J.1145.2012.00672
文献标志码:
A
摘要:
从Bacillus subtilis JNA 3-10中克隆出β-甘露聚糖酶基因成熟肽链编码序列manA1和含信号肽的β-甘露聚糖酶基因manA2,在B. subtilis 168中克隆表达,分别筛选获得高效分泌表达β-甘露聚糖酶的重组菌株BPM1001(pMA5-manA1/ B. subtilis 168)和BPM1002(pMA5-manA2/B. subtilis 168),结果表明菌株BPM1002总酶活力是菌株BPM1001的9.65倍,是原始菌株的13.1倍. 在基因manA2下游引入His序列克隆出β-甘露聚糖酶基因manA3,获得枯草芽孢杆菌168重组菌株BPM1003. 采用Ni-NTA柱纯化重组菌株BPM1003分泌表达的β-甘露聚糖酶,并研究其酶学性质,该酶促反应的最适pH为6.5,最适温度为65 ℃,在37 ℃条件下保存一个月酶活力依然保留有77.8%. 5 L发酵罐放大实验结果表明魔芋粉对于产β-甘露聚糖酶具有明显的诱导作用,酶活力最高可达2 748.82 U/mL. 图9 表3 参19
Abstract:
The manA1 gene encoding mature β-mannanase and the manA2 gene contained a signal peptide from the Bacillus subtilis JNA 3-10 were amplified. The two genes were inserted into expression vector pMA5, and the plasmid pMA5- manA1 and pMA5-manA2 were constructed and transformed into B. subtilis 168 respectively. The recombinant strains BPM1001 (pMA5-manA1 / B. subtilis 168) and BPM1002 (pMA5-manA2/B. subtilis 168) were therefore obtained. SDS-PAGE showed that the genes manA1 and manA2 were expressed successfully in recombinant B. subtilis 168. After incubated in shake-flask, the enzyme activity of strain BPM1002 was 9.65-fold higher than that of BPM1001. Subsequently, the β-mannanase gene manA3 was cloned with His-Tag added downstream of the gene manA2. Then the enzyme was purified successively by Ni affinity chromatography. The analysis of enzymatic properties showed that the optimum activity of the β-mannanase was at pH 6.5 and 65 ℃, and the enzyme activity was maintained 77.8% of original activity after incubated at 37 ℃ for 30 days. The activity of the β-mannanase reached 2 748.82 U/mL in a 5 L fermentor. Fig 9, Tab 3, Ref 19

参考文献/References:

1 Sachslehner A, Foidl G, Foidl N, Gübitz G, Haltrich D. Hydrolysis of isolated coffee mannan and coffee extract by mannanases of Sclerotium rolfsii. J Biotechnol, 2000, 80: 127~134
2 Talbot G, Sygusch J. Purification and characterization of thermo stable beta-mannanase and alpha-galactosidase from Bacillus stearothermophilus. Appl Environ Microbiol, 1990, 56 (11): 3505~3510
3 Montiel MD, Rodriguez J, Perez-Leblic MI, Hernandez MI, Arias ME, Copa-Patino JL. Screening of mannanases in actinomycetes and their potential application in the bleaching of pine Kraft pulps. Appl Microbiol & Biotechnol, 1999, 52: 240~245
4 Mendoza NS, Arai M, Sugimoto K, Ueda M, Kawaguchi T, Joson LM. Cloning and sequencing of beta-mannanase gene from Bacillus subtilis NM-39. Biochim Biophys Acta, 1995, 1243 (3): 552~554
5 Ma W (马威), Shen ZN (沈志娜), Chen YC (陈轶群), Li ZM (李志民), Cao YH (曹云鹤). Secreting expression of Bacillus subtilis β-mannanase in Pichia pastoris. Lett Biotechnol (生物技术通讯), 2010, 21 (2): 171~174
6 Braithwaite KL, Black GW, Hazlewood GP, AliBR S, GilbertH J. The non-catalytic cellulose-binding domain of a novel cellulase from Pseudomonas fluorescens subsp. cellulosa is important for the efficient hydrolysis of Avicel. Biochem J, 1995, 305: 1005~1010
7 Qiu ZH (邱振华), Shi PJ (石鹏君), Liu SC (刘素纯), Yao B (姚斌). Gene cloning and characterization of a protease-resistant β-mannanase rooted in Streptomyces fradiae var. k11. J Agric Sci & Technol (中国农业科技导报), 2010, 12 (4): 114~120
8 Wei YH (韦跃华), Mao AJ (毛爱军), He YZ (何永志), Qiao Y (乔宇), Dong ZY (董志扬). Expression of endo-β-mannanase gene from Trichoderma reesei in Pichia pastoris. Chin J Biotechnol (生物工程学报), 2005, 21 (6): 878~883
9 Li SY (李松瑜), Chen XL (陈小玲), Wang JJ (王军军), Cao YH (曹云鹤), Dong B (董冰). Constitutive and secreting expression of Aspergillus sulphureus β-mannanase in Pichia pastoris. Lett Biotechnol (生物技术通讯), 2009, 20: 12~14
10 Zhang YX (张运雄), Liu ZC (刘正初). 欧文氏杆菌CXJZ95-198基因组文库的构建. Plant Fibers Products (中国麻业), 2006, 28 (4): 176~181
11 Wang ZX (王正祥), Ma JS (马骏双), Niu DD (牛丹丹), Shi GY (石贵阳). Gene cloning and identification of β-mannanase from Bacillus licheniform . Chin J Appl Environ Biol (应用与环境生物学报), 2007, 13 (2): 253~256
12 Roth R, Moodley V, Zyl PV. Heterologous expression and optimized production of an Aspergillus aculeatus endo-1,4-β-mannanase in Yarrowia lipolytica. Mol Biotechnol, 2009, 43: 112~120
13 Yoon KH, Lim BL. Cloning and strong expression of a Bacillus subtilis WL-3 mannanase gene in B. subtilis. J Microbiol & Biotechnol, 2007, 17 (10): 1688~1694
14 Akino T, Nakamura N, Horikoshi K. Characterization of three β-D-mannanases of an Alkalophilic Bacillus sp. Agric Biol Chem, 1988, 52: 773~779
15 Lzard JY, Doughty MB, Kendell DA. Physical and conformational properties of synthetic idealized signal sequences parallel their biological function . Biochemistry, 1995, 34 (31): 9904~9912
16 Mccleary BV. A simple assay procedure for β-D-mannanase. Carbohydrate Res, 1978, 67: 213~221
17 Wayne L Nicholson. The Bacillus subtilis ydjL (bdhA) Gene Encodes Acetoin Reductase/2,3-Butanediol Dehydrogenase. Appl Environ Microbiol, 2008, 74 (22): 6832~6838
18 Nagarajan V, Albertson H, Chen M, Ribbe J. Modular expression and secretion vectors for Bacillus subtilis. Gene, 1992, 114 (1): 121~126
19 Chai PP (柴萍萍), Wei Y (韦赟), Jiang ZQ (江正强), Li LT (李里特), Isao K (日下部功). Optimization of β-mannanase production by Bacillus subtilis WY45. J China Agric Univ (中国农业大学学报), 2005, 10 (3): 77~80

相似文献/References:

[1]邓宇,华兆哲,** 赵志军,等.氮源对枯草芽孢杆菌WSHDZ-01合成过氧化氢酶的影响[J].应用与环境生物学报,2008,14(04):544.
[2]郭英,刘栋,赵蕾.生防枯草芽孢杆菌胞外植酸酶对小麦耐盐性的影响[J].应用与环境生物学报,2009,15(01):39.[doi:10.3724/SP.J.1145.2009.00039]
 GUO Ying,LIU Dong,ZHAO Lei.Effect of Extracellular Phytase Produced by Bacillus subtilis T2 on Salt Tolerance of Wheat Seedlings[J].Chinese Journal of Applied & Environmental Biology,2009,15(04):39.[doi:10.3724/SP.J.1145.2009.00039]
[3]付雯,张晓勇,周金燕,等.固定化枯草芽孢杆菌发酵生产捷安肽素[J].应用与环境生物学报,2009,15(02):230.[doi:10.3724/SP.J.1145.2009.00230]
 FU Wen,ZHANG Xiaoyong,et al.Jiean-peptide Prodution by Immobilized Cell Fermentation of Bacillus subtilis[J].Chinese Journal of Applied & Environmental Biology,2009,15(04):230.[doi:10.3724/SP.J.1145.2009.00230]
[4]包兴艳,郝建华,陈世建,等.产酯酶B1海洋枯草芽孢杆菌C5发酵条件优化[J].应用与环境生物学报,2012,18(06):999.[doi:10.3724/SP.J.1145.2012.00999]
 BAO Xingyan,HAO Jianhua,CHEN Shijian,et al.Optimization of Fermentation Conditions for Marine Bacillus subtilis C5 Producing Esterase B1[J].Chinese Journal of Applied & Environmental Biology,2012,18(04):999.[doi:10.3724/SP.J.1145.2012.00999]
[5]柳芳,田伟,李凌之,等.生防枯草芽孢杆菌SQR9固体发酵生产生物有机肥的工艺优化[J].应用与环境生物学报,2013,19(01):90.[doi:10.3724/SP.J.1145.2013.00090]
 LIU Fang,TIAN Wei,LI Lingzhi,et al.Optimization of Solid-state Fermentation Conditions for Antagonistic Bacillus subtilis SQR9 Producing Bio-organic Fertilizer[J].Chinese Journal of Applied & Environmental Biology,2013,19(04):90.[doi:10.3724/SP.J.1145.2013.00090]
[6]邹艳玲,徐美娟,饶志明.耐热β-淀粉酶高产菌株的筛选及其产酶条件优化[J].应用与环境生物学报,2013,19(05):838.[doi:10.3724/SP.J.1145.2013.00838]
 ZOU Yanling,XU Meijuan,RAO Zhiming.Screening and Fermentation Optimization for a High-yield Thermostable -Amylase Producing Strain[J].Chinese Journal of Applied & Environmental Biology,2013,19(04):838.[doi:10.3724/SP.J.1145.2013.00838]
[7]王远,高秋强,辛秀娟,等.β-葡萄糖苷酶基因和内切葡聚糖酶基因在枯草芽孢杆菌中的表达[J].应用与环境生物学报,2013,19(06):990.[doi:10.3724/SP.J.1145.2013.00990]
 WANG Yuan,GAO Qiuqiang,XIN Xiujuan,et al.Expression of Endoglucanase Gene and β-Glucosidase Genes in Bacillus subtilis[J].Chinese Journal of Applied & Environmental Biology,2013,19(04):990.[doi:10.3724/SP.J.1145.2013.00990]
[8]程毅鹏,饶志明,杨套伟,等.一种新型抗性质粒的构建及其在核黄素生产菌中的运用[J].应用与环境生物学报,2015,21(03):435.[doi:10.3724/SP.J.1145.2014.12003]
 CHENG Yipeng,RAO Zhiming,YANG Taowei,et al.Construction of a new resistance plasmid capable of riboflavin production in Bacillus subtilis RF1[J].Chinese Journal of Applied & Environmental Biology,2015,21(04):435.[doi:10.3724/SP.J.1145.2014.12003]
[9]高志强,李茜,徐岳松,等.高产木聚糖酶细菌的筛选、鉴定及其部分酶学特性[J].应用与环境生物学报,2017,23(03):443.[doi:2014.05011]
 GAO Zhiqiang,LI Xi,XU Yuesong,et al.Isolation and identification of a xylanase-producing bacterium and its enzymatic characteristics[J].Chinese Journal of Applied & Environmental Biology,2017,23(04):443.[doi:2014.05011]
[10]周强,王淳,李云萍,等.黄酮醇类化合物的合成与抗菌活性[J].应用与环境生物学报,2017,23(2):232.[doi:10.3724/SP.J.1145.2016.04019]
 ZHOU Qiang,WANG Chun**,et al.Synthesis and antibacterial activity of flavonols[J].Chinese Journal of Applied & Environmental Biology,2017,23(04):232.[doi:10.3724/SP.J.1145.2016.04019]

备注/Memo

备注/Memo:
教育部新世纪优秀人才计划(No. NCET-10-0459)、国家重点基础研究发展计划(973计划)(No. 2012CB725202)、国家自然科学基金项目(No. 30970056)、国家高技术研究发展计划(863计划)(No. 2011AA02A211)、中央高校基本科研业务费专项资金(No. JUSRP31001)、教育部“111”引智计划(No. 111-2-06)和江苏省优势学科工程项目资助
更新日期/Last Update: 2012-08-21