|本期目录/Table of Contents|

[1]张廷滔,张礼霞,高平,等.混合菌群生物燃料电池的产电机理与特性[J].应用与环境生物学报,2012,18(03):465-470.[doi:10.3724/SP.J.1145.2012.00465]
 ZHANG Tingtao,ZHANG Lixia,GAO Ping,et al.Mechanism and Characteristics of Electricity Generation in Microbial Fuel Cells Catalyzed by Mixed Culture[J].Chinese Journal of Applied & Environmental Biology,2012,18(03):465-470.[doi:10.3724/SP.J.1145.2012.00465]
点击复制

混合菌群生物燃料电池的产电机理与特性()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
18卷
期数:
2012年03期
页码:
465-470
栏目:
研究论文
出版日期:
2012-06-25

文章信息/Info

Title:
Mechanism and Characteristics of Electricity Generation in Microbial Fuel Cells Catalyzed by Mixed Culture
作者:
张廷滔张礼霞高平李大平
(1四川大学生命科学学院 成都 610064)
(2中国科学院成都生物研究所应用与环境研究中心 成都 610041)
(3中国科学院环境与应用微生物重点实验室 成都 610041)
Author(s):
ZHANG Tingtao ZHANG Lixia GAO Ping LI Daping
(1College of Life Sciences, Sichuan University, Chengdu 610064, China)
(2Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China)
(3Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China)
关键词:
生物燃料电池混合菌群产电机制电子供体电子受体厌氧污泥
Keywords:
(1College of Life Sciences Sichuan University Chengdu 610064 China)(2Chengdu Institute of Biology Chinese Academy of Science Chengdu 610041 China)(3Key Laboratory of Environmental and Applied Microbiology Chengdu Institute of Biology Chinese Academy of Sciences Chengdu 610041 China)
分类号:
TM911.45
DOI:
10.3724/SP.J.1145.2012.00465
文献标志码:
A
摘要:
利用厌氧污泥为接种源构建双室微生物燃料电池(Microbial fuel cell,MFC),研究其电子传递机制,并考察其底物利用谱及阴极电子受体对产电性能的影响. 结果表明:该MFC主要通过生物膜机制实现电子从有机物到固体电极的传递过程. 该混合菌MFC的底物利用谱范围广泛,单糖、二糖、小分子有机酸等有机物均可作为电子供体产电,其中以蔗糖和乳糖为底物产电效果较好,最大功率密度分别为69.69 mW/m2和60.75 mW/m2;而以乙醇为底物时,COD负荷最高,达123.55 mg L-1 d-1. 阴极不同电子受体对混合菌群MFC的产电性能也有显著影响,其中以KMnO4为电子受体电池性能最好,最大功率密度达1 396.74 mW/m2.
Abstract:
Dual-chamber microbial fuel cells (MFCs) were constructed by inoculating anaerobic sludge. The extracellular electron transfer mechanism of mixed bacteria in MFC anode chamber, the utilization of substrates and cathodic electron acceptors were investigated. The results showed that the mixed bacteria formed thick biofilm on carbon felt anode to facilitate the electron transfer between organic matter and MFC anode. Additionally, the MFC was capable of using a wide variety of organic compounds as electron donors for power generation, including monosaccharide, disaccharide as well as several types of small molecular organic fatty acid and ethanol. While sucrose and lactose as electron donors, the maximum power densities of the MFCs reached 69.69 mW/m2 and 60.75 mW/m2, respectively. The highest COD loading of 123.55 mg L-1 d-1 was attained with ethanol as electron donor. Acidic permanganate as the cathodic electron acceptor could greatly increase power production with the maximum power density of 1 396.74 mW/m2.

参考文献/References:

Logan BE, Hamelers B, Rozendal R. Microbial fuel cells: methodology and technology. Environ Sci Technol, 2006, 40 (17): 5181~5192
Deng LF, Li FB, Zhou SG, Huang DY, Ni JR. A study of electron-shuttle mechanism in Klebsiella pneumoniae based-microbial fuel cells. Chin Sci Bull, 2010, 55: 99~104
Zhang LX, Zhou SG, Li WS, Zhang JT, Lu N, Deng LF. Microbial fuel cell based on Klebsiella pneumoniae biofilm. Electrochem Commun, 2008, 10 (10): 1641~1643
Lu N (卢娜), Zhou SG (周顺桂), Ni JR (倪晋仁). Mechanism of energy generation of microbial fuel cells. Progr Chem (化学进展), 2008, 20 (7): 1233~1240
Kim JR, Cheng S, Oh S. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ Sci Technol, 2007, 41 (3): 1004~1009
Heijne T, Hamelers HVM, Wilde VD. Power generation using different cation, anion and ultrafiltration membranes in microbial fuel cells. Environ Sci Technol, 2006, 40: 5200~5205
Cheng S, Logan BE. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun, 2007, 9: 492~496
Qiao Y, Li CM, Bao SJ, Bao QL. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J Power Sources, 2007, 170: 79~84
Oh S, Min B, Logan BE. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ Sci Technol, 2004, 38: 4900~4904
Zhang LX, Liu CS, Zhuang L, Li WS. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells. Biosens Bioelectron, 2009, 24: 2825~2829
Park DH, Zeikus JG. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotech Bioeng, 2003, 81(3): 348~355
Liu H, Cheng S, Logan BE. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol, 2005, 39: 5488~5493
Moon H, Chang IS, Kim BH. Continuous electricity production from wastewater using mediator-less microbial fuel cell. Bioresour Technol, 2006, 97: 621~627
Huang X (黄霞), Liang P (梁鹏) , Cao XX (曹效鑫), Fan MZ (范明志). Progress in research of mediator-less microbial fuel cells. China Water & Wastewater (中国给水排水), 2007, 23 (4): 1~6
Liang M (梁敏), Tao HC (陶虎春), Li SF (李绍峰), Li W (李伟), Zhang LJ (张丽娟), Ni JR (倪晋仁). Treatment of Cu-(2+)-containing wastewater by microbial fuel cell with excess sludge as anodic substrate. Environ Sci (环境科学), 2011, 32 (1): 180~185
Zheng Y (郑峣), Liu ZH (刘志华), Li XM (李小明), Jia B (贾斌), Fang L (方丽). Influencing factors for output power density of microbial fuel cells using excess sludge from wastewater treatment plant as fuel. China Environ Sci (中国环境科学), 2010, 30 (10): 64~68
Zhao QL (赵庆良), Jiang JQ (姜珺秋), Wang K (王琨), Zhang LW (张力为). Simultaneous treatment of sludge and generation of electricity with a microbial fuel cell. J Harbin Eng Univ (哈尔滨工程大学学报), 2010, 31 (6): 781~784
Sun jian (孙建), Hu YY (胡勇有). Research progress of a novel notion for wastewater treatment — Microbial fuel cell technology. Ind Water & Wastewater (工业用水与废水), 2008, 29 (1): 1~6
Zhao LK (赵丽坤), Li JC (李景晨), Hao YT (郝耀彤), Lü YY(吕莹莹). Progress in the application of the microbial fuel cells to wastewater treatment. Hebei Chem Engin & Ind (河北化工), 2010, 33 (8): 21~24
Xie Q (谢晴), Yang JW (杨嘉伟), Wang B (王彬), Leng G (冷庚), Dan DZ (但德忠). Recent progress of microbial fuel cells for wastewater treatment. Technol Water Treat (水处理技术), 2010, 36 (3): 10~16
Lovley DR, Phillips EJP. Novel mode of microbial energy-metabolism - organic-carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol, 1988, 54 (6): 1472~1480
Chen LB (陈立波), Li FT (李凤亭). Rapid determination of chemical oxygen demand. Environ Prot Chem Ind (化工环保), 2004, 24 (6): 455~457
Kim BH, Kim HJ, Hyun MS, Park DH. Direct electrode reaction of Fe (lI1)-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol, 1999, 9 (2): 127~131
Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol, 2004, 70: 5373~5382
Zhao F, Slade RCT, Varcoe JR. Techniques for the study and development of microbial fuel cells: An electrochemical perspective. Chem Soc Rev, 2009, 38 (7): 1926~1939
Rabaey K, Clauwaert P, Aelterman P, Verstraete W. Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol, 2005, 39: 8077~8082
Zhao F, Harnisch F, Schröder U, Scholz F, Bogdanoff P, Herrmann I. Application of pyrolysed iron (II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun, 2005, 7: 1405~1410

相似文献/References:

[1]胡吉军,郭维强,贾志国,等.混合菌群产氢特性研究[J].应用与环境生物学报,2009,15(01):115.[doi:10.3724/SP.J.1145.2009.00115]
 HU Jijun,GUO Weiqiang,JIA Zhiguo,et al.Characterization of H2-producing Bacteria in Mixed Cultures[J].Chinese Journal of Applied & Environmental Biology,2009,15(03):115.[doi:10.3724/SP.J.1145.2009.00115]
[2]张庆华,陈国涛,冯琳琳,等.混合菌群对偶氮染料的脱色降解研究进展[J].应用与环境生物学报,2020,26(02):469.[doi:10.19675/j.cnki.1006-687x.2019.06009]
 ZHANG Qinghua,CHEN Guotao,FENG Linlin,et al.Research progress on microbial decolorization and degradation of azo dyes[J].Chinese Journal of Applied & Environmental Biology,2020,26(03):469.[doi:10.19675/j.cnki.1006-687x.2019.06009]

备注/Memo

备注/Memo:
中国科学院知识创新工程重要方向项目(No. KSCX2-YW-G-075-12)和国家自然科学基金项目(Nos. 51074149, 31000070)资助
更新日期/Last Update: 2012-06-19