|本期目录/Table of Contents|

[1]余永昌,林先贵,张晶,等.近地层臭氧浓度升高对麦田土壤微生物群落功能多样性的影响[J].应用与环境生物学报,2012,18(02):309-314.[doi:10.3724/SP.J.1145.2012.00309]
 YU Yongchang,LIN Xiangui,ZHANG Jing,et al.Effect of Elevated Surface O3 Concentration on Soil Microbial Functional Diversity in Wheat Field[J].Chinese Journal of Applied & Environmental Biology,2012,18(02):309-314.[doi:10.3724/SP.J.1145.2012.00309]
点击复制

近地层臭氧浓度升高对麦田土壤微生物群落功能多样性的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
18卷
期数:
2012年02期
页码:
309-314
栏目:
研究简报
出版日期:
2012-04-25

文章信息/Info

Title:
Effect of Elevated Surface O3 Concentration on Soil Microbial Functional Diversity in Wheat Field
作者:
余永昌 林先贵 张晶 李全胜 朱建国
(1中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室/南京土壤研究所-香港浸会大学土壤与环境联合开放实验室 南京 210008)
(2中国科学院研究生院 北京 100049)
(3南京农业大学生命科学学院农业部农业环境微生物工程重点开放实验室 南京 210095)
Author(s):
YU Yongchang LIN Xiangui ZHANG Jing LI Quansheng ZHU Jianguo
(1State Key Laboratory of Soil and Sustainable Agriculture/Joint Open Laboratory of Soil and Environment, Hong Kong Baptist University & Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China)
(2Graduate University of Chinese Academy of Sciences, Beijing 100049, China)
(3Key Laboratory for Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China)
关键词:
臭氧浓度升高麦田水溶性有机碳呼吸强度土壤微生物功能多样性
Keywords:
elevated O3 concentration wheat field water-soluble organic carbon respiratory intensity soil microbial functional diversity
分类号:
S154.36
DOI:
10.3724/SP.J.1145.2012.00309
文献标志码:
A
摘要:
利用中国臭氧FACE(Free-air O3 concentration enrichment,开放式空气臭氧浓度增高)试验平台,通过测定麦季土壤水溶性有机碳含量、土壤呼吸强度和BIOLOG指标,研究了近地层臭氧浓度升高50%条件下(~70 nmol mol-1),麦田土壤微生物功能多样性的响应. 结果发现,臭氧浓度升高下麦田土壤水溶性有机碳含量提高,土壤微呼吸强度增加,平均吸光值显著高于对照(P<0.05). 多样性指数结果显示,臭氧浓度升高对麦田土壤微生物丰富度和优势度指数没有显著影响,但是臭氧处理下均一度指数显著高于对照(P<0.05);主成分分析显示,相对于其它碳源,臭氧浓度升高对麦田土壤微生物的糖类物质利用能力的影响最大. 研究揭示了1.5倍的近地层臭氧浓度增强了麦田土壤微生物碳源利用能力,特别是非优势微生物. 图4 表2 参23
Abstract:
Abstract The effect of elevated surface O3 concentration (~70 nmol mol-1) on soil microbial functional diversity was investigated by determining water-solution organic carbon (WSOC) content, soil respiration intension and BIOLOG in China O3-FACE (Free-air ozone concentration enrichment) field based on a rice/wheat rotation system. The results showed that with the enhancing of O3 concentration, the WSOC content, soil respiration intension and AWCD (average well colour development) were significantly increased (P<0.05). Diversity indexes showed that with the enhancing of O3 concentration, Shannon and Simpson indices had no differences, but McIntosh indices was significantly increased (P<0.05). The PCA results showed that the elevated O3 concentration significantly affected the soil microbial ability of utilizing glucide and better than any other substrates. This research suggested that elevated O3 concentration (~70 nmol mol-1) significantly increased soil microbial functional diversity in wheat field. Fig 4, Tab 2, Ref 23

参考文献/References:

1 Vingarzan R. A review of surface ozone background levels and trends. Atmos Environ, 2004, 38 (21): 3431~3442
2 Feng ZZ (冯兆忠), 小林和彦, Wang XK (王效科), Feng ZW (冯宗炜). 小麦产量形成对大气臭氧浓度升高响应的整合分析. Chin Sci Bull (科学通报), 2008, 53 (24): 3080~3085
3 Ashmore MR, Bell JN. The Role of ozone in global change. Ann Bot, 1991, 67 (1): 39~48
4 McCrady JK, Andersen CP. The effect of ozone on below-ground carbon allocation in wheat. Environ Poll, 2000, 107 (3): 465~472
5 Johnson RM, Pregitzer KS. Concentration of sugars, phenolic acids, and amino acids in forest soils exposed to elevated atmospheric CO2 and O3. Soil Biol & Biochem, 2007, 39 (12): 3159~3166
6 Nelson T, Edwards S. Root and soil respiration responses to ozone in Pinus taeda L. seedlings. New Phytol 1991, 118 (2): 315~321
7 Fitzgerald LB, Stephen AP, Torbert HA, Edwin LF, Walter AP, Shuijin H. Decomposition of soybean grown Under elevated concentrations of CO2 and O3. Global Change Biol, 2005, 11 (4): 685~698
8 Hofstra G, Ali A, Wukasch RT, Fletcher RA. The rapid inhibition of root respiration after exposure of bean (Phaseolus vu1garis L.) plants to ozone. Atmos Environ, 1981, 15: 483~487
9 Kasurinen A, Gonzales PK, Riikonen J, Vapaavuori E, Holopainen T. Soil CO2 efflux of two silver birch clones exposed to elevated CO2 and O3 levels during three growing seasons. Global Change Biol, 2004, 10: 1654~1665
10 Li GM (李果梅), Wang YQ (王殳屹), Shi Y (史奕), Chen X (陈欣). Effects of elevated ozone and temperature on soil enzymes activities and henolic compounds content in spring wheat. Chin J Agro-Environ Sci, 2008, 27 (1): 121~125
11 Shi GY, Yang LX, Wang YX, Kobayashi K, Zhu JG, Tang HY, Pan ST, Chen T, Liu G, Wang YL. Impact of elevated ozone concentration on yield of four Chinese rice cultivars under fully open-air field conditions. Agric, Ecosyst & Environ, 2009, 131: 178~184
12 Haynes RJ, Francis GS.Changes in microbial biomass C, soil carbohydrate composition and aggregate stability induced by growth of selected crop and forage species under field conditions. J Soil Sci, 1993, 44: 665~675
13 Xu GH (许光辉), Zheng HY (郑洪元). 土壤微生物分析方法手册. Beijing, China: China Agriculture Press (北京: 农业出版社), 1986
14 Classen AT, Boyle SI, Haskins KE, Overby ST, Hart SC. Community-level physiological profiles of bacteria and fungi: plate type and incubation temperature influences on contrasting soils. FEMS Microbiol, 2003, 44: 319~328
15 Ni JZ (倪进治), Xu JM (徐建民), Xie ZM (谢正苗). Advances in soil water-soluble organic carbon research. Chin Ecol & Environ (生态环境), 2003, 12 (1): 71~75
16 Chen CR, Xu ZH. Analysis and behavior of soluble organic nitrogen in forest soils. J Soils & Sediments, 2008, 8 (6 ): 363~378
17 Nelson T, Edwards S. Root and soil respiration responses to ozone in Pinus taeda L. seedlings. New Phytol, 1991, 118 (2): 315~321
18 Choi KH, Dobbs FC. Comparison of two kinds of biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities. J Microbiol Methods, 1999 , 36 (3) : 203~213
19 Hackett CA, Griffiths BS. Statistical analysis of the time-course of Biolog substrate utilization. J Microbiol Methods, 1997, 30 (1): 63~69
20 Rogers H, Runion G., Krupa S. Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. EnvironPoll, 1994, 83: 155~189
21 Kraffczyk I, Trolldenier G, Beringer H. Soluble root exudates of maize - Influence of potassium supply and rhizosphere microorganisms. Soil Biol & Biochem, 1984, 16: 315~322
22 Sami KM, Jaana KH, Riikka P, Paivi T, Sanna S, Jouko S, Toini H, Perttij M. Long-term ozone effect on vegetation, microbial community and methane dynamics of boreal peatland microcosms in open-field conditions. Global Change Biol, 2008, 14: 1891~1903
23 Lin WX (林文雄), Xiong J (雄君), Zhou JJ (周军建), Qiu L (邱龙), Shen LH(沈荔花), Li ZF (李振方), Chen H(陈慧), Hao HR (郝慧荣), Chen T (陈婷), Lin RY(林瑞余), He HB (何海斌), Liang YY (梁义元). Research status and its perspective on the properties of rhizosphere biology mediated by allelopathic plants. Chin J Eco-Agric (中国生态农业学报), 2007, 15 (4): 1~8

备注/Memo

备注/Memo:
国家自然科学基金项目(No. 40771202)、中国科学院知识创新方向项目(No. KZCX2-EW-414)、国家科技部国际科技合作计划项目(No. 2009DFA31110)、中国科学院国际合作重点项目(No. GJHZ0748)和日本环境厅全球环境研究基金项目(中日合作)(No. C-062)资助
更新日期/Last Update: 2012-04-27