|本期目录/Table of Contents|

 HUANG Anping,HAN Baoyu,BAO Xiaocun.Change in Volatile Organic Compounds from Camellia sinensis (L.) O. Kuntze Damaged by Iragoides fasciata Moore (Lepidoptera: Eucleidae)[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):819-823.[doi:10.3724/SP.J.1145.2011.00819]





Change in Volatile Organic Compounds from Camellia sinensis (L.) O. Kuntze Damaged by Iragoides fasciata Moore (Lepidoptera: Eucleidae)
(1中南大学隆平分院 长沙 410083)
(2中国计量学院浙江省生物计量与检验技术重点实验室 杭州 310018)
(3湖南省农业科学院茶叶研究所 长沙 410125)
HUANG AnpingHAN BaoyuBAO Xiaocun
(1Longping Branch of Central South University, Changsha 410083, China)
(2Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine of China Jiliang University, Hangzhou 310018, China)
(3Hunan Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China)
Camellia sinensis (L.) O. Kuntze Iragoides fasciata Moore volatile organic compounds (VOCs) herbivore-induced plant volatiles (HIPVs)
Q946.8 : S476.3 : S571.08
为筛选引诱天敌昆虫的化学信息素,以应用其防控茶刺蛾(Iragoides fasciata Moore),研究了茶树[Camellia sinensis (L.) O. Kuntze]被茶刺蛾危害后释放出的挥发性有机物的变化. 应用同时萃取蒸馏法收集被茶刺蛾危害和未危害的茶叶的挥发性有机化合物,气相色谱/质谱联用仪(GC/MS)分析结果发现,未受害枝叶挥发性有机化合物共有63种组分,主要由酯类、醇类、烃类、酮类、杂环化合物、醛类、有机酸和醚类组成,烃类物质的相对含量占19.05%,而受害枝叶释放出的挥发物中烃类物质的相对含量增加到26.79%,反式-橙花叔醇、雪松醇、邻苯二甲酸二丁酯、邻苯甲酸二异丁酯相对含量显著增加,此外,产生了32种新的组分,包括10种酯类、5种醇类、5种烯烃类、4种杂环类、3种芳香烃类、3种烷烃类、1种醛和1种酮. 图2 表1 参32
The effect of the damaging of Iragoides fasciata Moore on the volatile organic compounds (VOCs) of Camellia sinensis (L.) O. Kuntze was studied. VOCs from the undamaged and damaged tea plants were collected by simultaneous distillation extraction and analyzed by gas chromatography/mass spectrometry (GC-MS). The results showed that a total of sixty-three components, mainly esters, alcohols, hydrocarbons, ketones, heterocyclic compounds, aldehydes, organic acids and ethers were identified in the undamaged twigs and leaves, and the relative amount of hydrocarbons was 19.05%, while that from the damaged ones increased to 26.79%, and the relative amount of cis-nerolidol, cedar alcohol, dibutyl phthalate and phthalic acid was significantly increased. Furthermore, thirty-two new compounds were identified in the damaged ones, including ten esters, five alcohols, five olefins, four heterocyclics, three aromatic hydrocarbons, one alkane, one ketone and one aldehyde. The results can lay a foundation for screening infochemicals which can be used as a lure for natural enemies of insects and applied to control I. fasciata Moore. Fig 2, Tab 1, Ref 32


1 Arimura G, Kost C, Boland W. Herbivore-induced, indirect plant defences. Biochim Biophys Acta, 2005, 1734 (2): 91~111
2 Dicke M, Sabelis MW, Takabayashi J, Bruin J, Posthumus MA. Plant strategies of manipulating predator-prey interactions through allelochemicals: Prospects for application in pest control. J Chem Ecol, 1990, 16 (11): 3091~3118
3 Turlings TCJ, Tumlinson JH, Lewis WJ. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science, 1990, 250: 1251~1253
4 Vet LEM, Dicke M. Ecology of infochemical use by natural enemies in a tritrophic context.Annu Rev Entomol, 1992, 37: 141~172
5 Stowe MK, Turlings TCJ, Loughrin JH, LewisWJ, Tumlinson JH. The chemistry of eavesdropping, alarmand deceit. Proc Natl Acad Sci USA, 1995, 92: 23~28
6 Takabayashi J, Dicke M. Plant-carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci, 1996, 1: 109~113
7 Liu F (刘芳), Lou YG (娄永根), Cheng JA (程家安). Herbivory insect induced plant volatiles: Evolutionary products of plant-herbivore-natural enemy interactions. Entomol Knowl (昆虫知识), 2003, 40 (6): 481~486
8 Lou YG (娄永根), Cheng JA (程家安). Herbivore-induced plant volatiles: Primary characteristics, ecological functions and its release mechanism. Acta Ecol Sin (生态学报), 2000, 20 (6): 1097~1106
9 Xu N (徐宁), Chen ZM (陈宗懋), You XQ (游小清). Isolation and identification of tea plant volatiles attractive t o tea geometrid parasitoids. Acta Entomol Sin (昆虫学报), 1999, 42 (2): 126~131
10 Chen XX (陈信祥), Luo XG (罗新国). 茶刺蛾的发生与防治. J Tea (茶叶), 1996, 22 (1): 27, 32
11 Ye GY (叶恭银), Hu C (胡萃), Hong J (洪健), Zhu JQ (朱俊庆), Shang JN (商建农). Morphlogy and pathogenicity of the nuclear polyhedrosis virus from Phlossa fasciata Moore. Acta Agric Zhejiangensis (浙江农业学报), 1992, 4(3): 133~136
12 Li JD (李金德), Zhang JW (张觉晚). 茶剌蛾生活史及防治的初步观察. Entomol Knowl (昆虫知识), 1965 (6): 342~344
13 Peng HY (彭银辉), Zhang JW (张觉晚). 茶刺蛾核型多角体杆状病毒的初步研究. China tea (中国茶叶), 1982, 4 (2): 27, back cover
14 Yang ZY (杨志荣), Liu SG (刘世贵), Wu TJ (伍铁桥). Isolation and identification of Darna trima granulosis virus. Virol Sin (中国病毒学), 1991, 6 (4): 374~376
15 Lü WM (吕文明), Lou YF (楼云芬). 茶刺蛾暴发成灾因子的探讨. China Tea (中国茶叶), 1989 (1): 18~19
16  Chen CM (陈常铭), Song HY (宋慧英), Xiao TG (萧铁光). Survey on natural enemies in tachinid to tea pests in Hunan. J Hunan Agric Coll (湖南农学院学报), 1993, 19 (6): 585~590
17  Paré PW, Tumlinson JH. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol, 1997, 14: 1161~1167
18 Turlings TCJ, Lengwiler UB, Bernasconi ML , Wechsler D. Timing of induced volatile emissions in maize seedlings. Planta, 1998, 207: 146~152
19  Hunter MD. A breath of fresh air: Beyond laboratory studies of plant volatile-natural enemy interactions. Agric & For Entomol, 2002, 4: 81~86
20 Meiners T, Hilker M. Host location in Oom yzus gallerucae (Hymenoptera: Eulophidae), an egg parasitoid of the elm leaf beetle Xanthogalerucaluteola (Coleoptera: Chrysomelidae). Oecologia, 1997, 112: 87~93
21 Schrder R, ForstreuterM, Hilker M. A plant notices insect egg deposition and changes its rate of photosynthesis. Plant Physiol, 2005, 138: 470~477
22 Mumm R, Schrank K, Wegener R, Schulz S, Hilker M. Chemical analysis of volatiles emitted by Pinus sylvestris after induction by insect oviposition. J Chem Ecol, 2003, 29: 1235~1252
23 Dudareva N, Negre F, Nagegowda DA, Orlova I. Plant volatiles: Recent advances and future perspectives. Crit Rev Plant Sci, 2006, 25: 417~440
24 Han BY (韩宝瑜). 茶树—茶蚜—捕食、寄生性天敌间定位、取食的物理、化学通讯机制: [Doctor Degree Dissertation]. Beijing, China: Graduate School and Tea Research Institute of Chinese Academy of Agricultural Sciences, Tea Research Institute (北京: 中国农业科学院研究生院,茶叶研究所), 1999
25 Yang XG (杨新根), Xie YP (谢映平), Xue JL (薛皎亮), Chang XX (畅晓霞). Change in volatiles of Diospyros kaki L. f. damaged by Ceroplastes japonicus green and their attraction to chilocorus kuwanae silvestri.Chin J Appl Environ Biol (应用与环境生物学报), 2006, 12 (2): 215~219
26  Zhang Y, Yan FS, Herbivore-induced volatiles and their roles in plant defense. Acta Entomol Sin, 1998, 41 (2): 204~214
27  Likens ST, Nikerson GB. Detection of certain hop constituents in brewing products. Am Soc Brew Chem Proc, 1964, 5: 13
28  Schultz TH, Flath RA, Mon TR, Eggling SB, Teranishi R. Isolation of volatile components from a model system.Agric Food Chem, 1977, 25 (3): 446~449
29  Zhu Q (朱旗), Shi ZP (施兆鹏), Ren CM (任春梅). Studies on the different aroma making methods of green tea aroma. J Tea Sci (茶叶科学), 2001, 21 (1): 38~43
30  Li YJ (李拥军), Shi ZP (施兆鹏). Extraction of tea aroma by absorption column method and SDE method. J Hunan AgricUniv Nat Sci (湖南农业大学学报), 2001, 27 (4): 295~299
31  Zhang ZZ (张正竹), Chen DD (陈玎玎). The analysis of efficiency of tea volatile oil by simultaneous distillation extraction apparatus. China Tea Process (中国茶叶加工), 2003 (1): 31~33
32  Chen YJ (陈悦娇), Wang DM (王冬梅), Deng WQ (邓炜强) Huang QJ (黄巧娟),Yang DP (杨得坡). Comparison on the aroma constituents of oolong tea extracted by SDRP and SDE methods. Acta Sci Nat Univ Sunyatseni (中山大学学报自然科学版), 2005, 44 (Suppl): 275~278


[1]王海斌** 叶江华 陈晓婷 贾小丽 孔祥海.连作茶树根际土壤酸度对土壤微生物的影响[J].应用与环境生物学报,2016,22(03):480.[doi:10.3724/SP.J.1145.2015.09019]
 WANG Haibin**,YE Jianghua,CHEN Xiaoting,et al.Effect on soil microbes of the rhizospheric soil acidity of tea tree continuous cropping*[J].Chinese Journal of Applied & Environmental Biology,2016,22(06):480.[doi:10.3724/SP.J.1145.2015.09019]
 SUN Ping,ZHANG Guoying,XIANG Ping,et al.Expression and regulation of the shikimic acid pathway gene DHD/SDH in tea plant (Camellia sinensis)[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):322.[doi:10.19675/j.cnki.1006-687x.2017.05014]
 WANG Haibin,**,CHEN Xiaoting,et al.Using T-RFLP technology to analyze bacterial diversity in the rhizospheric soils of tea tree at different ages[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):775.[doi:10.19675/j.cnki.1006-687x.2017.10003]
 GUO Yuqiong,HUANG Daobin,CHANG Xiaojun,et al.Somatic embryogenesis and the changes of endogenous hormones in Camellia sinensis ‘Tieguanyin’[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):824.[doi:10.19675/j.cnki.1006-687x.2017.12027]
 GUO Yuqiong,WANG Zhong,ZHU Chen,et al.Cloning and expression of the copper/zinc-superoxide dismutase 1 gene and its promoter under low temperature stress in Camellia sinensis[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):1122.[doi:10.19675/j.cnki.1006-687x.2018.02021]
 YUE Chuan,et al..Cloning and expression of RING-finger E3 ubiquitin ligase CsSDIR1 gene in tea plant (Camellia sinensis)[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):1375.[doi:10.19675/j.cnki.1006-687x.2018.09010]
 WANG Haibin,et al..Effect of soil acidification on yield and quality of tea tree in tea plantations from Anxi county, Fujian Province[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):1398.[doi:10.19675/j.cnki.1006-687x.2017.12008]
 ZHENG Shizhong,JIANG Shengtao,et al.Isolation of the Ankyrin gene promoter from tea plant (Camellia sinensis L.) and a subsequent analysis of the function of its 5′UTR intron[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):1381.[doi:10.19675/j.cnki.1006-687x.2019.05011]
 XIANG Lihui,CHEN Lin,YU Wenquan & ZHANG Yinggen.Identification of the GH1 gene family in Camellia sinensis and expression analysis during the withering process of fresh tea leaves[J].Chinese Journal of Applied & Environmental Biology,2020,26(06):878.
[10]曹红利,陆鲸冰,吴英杰,等.茶树7个褪黑素合成酶基因的鉴定及非生物胁迫响应[J].应用与环境生物学报,2020,26(05):1244.[doi: 10.19675/j.cnki.1006-687x.2019.10012]
 CAO Hongli,LU Jingbing,WU Yingjie & YUE Chuan.Isolation?and?expression?analysis?of?melatonin?biosynthesis genes in tea plant?in response to abiotic stress[J].Chinese Journal of Applied & Environmental Biology,2020,26(06):1244.[doi: 10.19675/j.cnki.1006-687x.2019.10012]


国家自然科学基金项目(Nos. 31071744, C140602)资助
更新日期/Last Update: 2011-12-31