|本期目录/Table of Contents|

[1]吕林峰,岳建宇,费忠安,等.油菜菌核病菌(Sclerotinia sclerotiorum)与细菌间的基因水平转移[J].应用与环境生物学报,2012,18(01):42-48.[doi:10.3724/SP.J.1145.2012.00042]
 LÜ,Linfeng,YUE Jianyu,et al.Horizontal Gene Transfer Between Sclerotinia sclerotiorum and Bacteria[J].Chinese Journal of Applied & Environmental Biology,2012,18(01):42-48.[doi:10.3724/SP.J.1145.2012.00042]
点击复制

油菜菌核病菌(Sclerotinia sclerotiorum)与细菌间的基因水平转移()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
18卷
期数:
2012年01期
页码:
42-48
栏目:
研究论文
出版日期:
2012-02-25

文章信息/Info

Title:
Horizontal Gene Transfer Between Sclerotinia sclerotiorum and Bacteria
作者:
吕林峰岳建宇费忠安赵锐乔代蓉曹毅
(四川大学生命科学学院四川省生物信息与代谢工程共享实验平台 成都 610064)
Author(s):
LÜ Linfeng YUE Jianyu FEI Zhong’an ZHAO Rui QIAO Dairong CAO Yi
(Sichuan Public Experimental Platform of Bioinformatics and Metabolic Engineering, College of Life Sciences, Sichuan University, Chengdu 610064)
关键词:
基因水平转移油菜菌核病系统发生树碱基组成
Keywords:
horizontal gene transfer (HGT) Sclerotinia sclerotiorum phylogenetic tree GC-content
分类号:
S435.654 : Q933
DOI:
10.3724/SP.J.1145.2012.00042
文献标志码:
A
摘要:
油菜菌核病(Sclerotinia sclerotiorum)是油菜生产上最重要的病害之一,其致病性可能来源于基因水平转移(Horizontal gene transfer,HGT). 为认识其致病原理和寻找新的真菌抑制剂的靶点,首先通过BLASTp发现其基因XM_001585458.1编码蛋白XP_001585508.1与细菌比对结果中出现低E值3.23e-109和高SCORE值436,暗示存在HGT现象;进一步通过系统进化树的建立,发现该蛋白在进化分枝上更接近于细菌中由Streptomyces sp. C的NZ_CM000832.1基因编码的蛋白ZP_07291173;同时核苷酸组成分析也发现该基因与油菜菌核病菌基因组的碱基组成有较大差别,GC含量提高了14.95%. 这些结果证明了XM_001585458.1的确存在基因水平转移事件. 结构分析和COG蛋白功能分类显示该HGT序列编码蛋白XP_001585508.1具有FA58C_3(Coagulation factors 5/8 type C domain)、Kelch repeat type 1、Galactose-binding domain-like、Galactose oxidase/kelch, beta-propeller等保守结构域,应为一个膜蛋白并参与多糖代谢,推测该水平转移基因与S. sclerotiorum在侵染植物时进行细胞壁水解和致病性有关. 图3 表3 参17
Abstract:
Sclerotinia sclerotiorum is one of the most terrible diseases for rapeseeds in production. Its pathogenicity may probably get from horizontal gene transfer (HGT). For understanding its pathogenic mechanism and finding targets for new fungal inhibitors, firstly in BLASTp comparison results of gene XM_001585458.1-coded proteins XP_001585508.1 of different species, low E value 3.23e-109 and high SCORE value 436 appeared in the results of bacteria, showing HGT happened probably. Then via phylogenetic method, gene XM_001585458.1 was found out the closest to bacterium. At the same time, by nucleotide composition analysis, XM_001585458.1 also appeared quite different from the genome of S. sclerotiorum, since GC-content increased 14.95%. To sum up, HGT of gene XM_001585458.1 was found out. And structure and COG analysis indicated that there were two distinct transmembrane domains in 14~171 and 465~485 of protein XP_001585508.1, and this protein also consisted of 6 β-sheets, 1 α-helix, some turns, and random coils. So the candidate protein encoded by the transferring gene should be further predicted to be a membrane protein participating in polysaccharide metabolic. And it can be assumed that the gene transferring is related to the pathogenicity of S. sclerotiorum and its activity of hydrolyzing the cell wall when it is infecting the plant. Fig 3, Tab 3, Ref 17

参考文献/References:

1 Zhao DD (赵丹丹), Zang X (臧新), Tian BM (田保明), Gu JW (顾建伟). Research progress on Sclerotinina sclerotiorum and its rapeseed diseases. J Henan Agric Sci (河南农业科学), 2010, 2: 120~122
2 Jain R, Rivera MC, Lake JA. A horizontal gene transfer among genomes: The complexity hypothesis. Proc Nat Acad Sci USA, 1999, 96 (7): 3801~3806
3 Jain R, Rivera MC, Moore JE, Lake JA. Horizontal gene transfer accelerates genome innovation and evolution. Mol Biol, 2003, 20: 1598~1602
4 Bai YH (柏耀辉), Wen DH (温东辉), Tang XY (唐孝炎). Horizontal gene transfer and its application in pollution remediation. Chin J Appl Environ Biol (应用与环境生物学报), 2007, 13 (5): 741~747
5 Lin XY (林晓燕), Li L (李林), Sun M (孙明), Yu ZN (喻子牛). Genetic transfer among bacteria in different ecological environments. Chin J Appl Environ Biol (应用与环境生物学报), 2005, 11 (3): 388~392
6 Li MY (李蒙英), Shen B (沈标), Li SP (李顺鹏). Horizontal gene transfer in biofilms and its induced bioenhancement. Chin J Appl Environ Biol (应用与环境生物学报), 2006, 12 (3): 441~444
7 Davis CC, Wurdack KJ. Host to parasite gene transfer in flowering plants: Phylogenetic evidence from Malphigialis. Science, 2004, 305: 676
8 Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller M, Lipman DJ. Gapped BLAST and PSIBLAST: A new generation of protein database search programs. Nucleic Acids Res, 1997, 25: 3389~3402
9 Balakrishnan R, Christie KR, Costanzo MC, Dolinski K, Dwight SS, Engel SR, Fisk DG, Hirschman JE, Hong EL, Nash R, Oughtred R, Skrzypek M, Theesfeld CL, Binkley G, Qing D, Lane C, Sethuraman A, Shuai W, Botstein D, Cherry JM. Fungal BLAST and Model Organism BLASTP Best Hits: new comparison resources at the Saccharomyces Genome Database (SGD). Nucleic Acids Res, 2005, 33: 374~377
10 Clarke GDP, Beiko RG, Ragan MA, Charlebois RL. Inferring genome trees by using a filter to eliminate phylogenetically discordant sequences and a distance matrix based on mean normalized BLASTP scores. J Bacteriol, 2002, 184 (8): 2072
11 Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings Bioinf, 5: 150163
12 Letunic I, Bork P. Interactive tree of life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics, 2007, 23 (1): 127~128
13 Saitou N, Imanishi T. Relative efficiencies of the Fitch-Margoliash, maximum-parsimony, maximum-likelihood, minimum-evolution, and neighbor-joining methods of phylogenetic tree construction in obtaining the correct tree. Mol Biol, 1989, 6 (5): 514~525
14 Peden JF. Analysis of codon usage: [Ph.D. thesis]. University of Nottingham, UK, 1999
15 Tatusov RT, Koonin EV, Lipman. A genomic perspective on protein families. Science, 1997, 278: 631~637
16 Tatusov RT, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA. The COG database: An updated version includes eukaryotes. BMC Bioinf, 2003, 4: 41
17 Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV. The COG database: New developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res, 2001, 29 (1): 22~28

相似文献/References:

[1]姜玮瑜,代平礼,张永军,等.转Bt-cry1Ac基因棉花对意大利蜜蜂肠道细菌群落的影响[J].应用与环境生物学报,2010,16(02):211.[doi:10.3724/SP.J.1145.2010.00211]
 JIANG Weiyu,DAI Pingli,ZHANG Yongjun,et al.Effect of Transgenic Cotton with cry1Ac Gene on Intestinal Bacterial Community of Apis mellifera ligustica[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):211.[doi:10.3724/SP.J.1145.2010.00211]

备注/Memo

备注/Memo:
国家“973”项目(No. 2009CB125910)和四川省“十一五”支撑计划项目(Nos. 2008GZ0020,2008GZ0021)资助
更新日期/Last Update: 2012-02-29