|本期目录/Table of Contents|

[1]吴锡麟,叶功富,张尚炬,等.不同海岸梯度上短枝木麻黄小枝金属元素含量及其再吸收率动态[J].应用与环境生物学报,2011,17(05):645-650.[doi:10.3724/SP.J.1145.2011.00645]
 WU Xilin,YE Gongfu,ZHANG Shangju,et al.Contents of Some Mineral Elements and Their Resorption Efficiencies in Casuarina equisetifolia Branchlets Across a Coastal Gradient[J].Chinese Journal of Applied & Environmental Biology,2011,17(05):645-650.[doi:10.3724/SP.J.1145.2011.00645]
点击复制

不同海岸梯度上短枝木麻黄小枝金属元素含量及其再吸收率动态()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
17卷
期数:
2011年05期
页码:
645-650
栏目:
研究论文
出版日期:
2011-10-24

文章信息/Info

Title:
Contents of Some Mineral Elements and Their Resorption Efficiencies in Casuarina equisetifolia Branchlets Across a Coastal Gradient
作者:
吴锡麟叶功富张尚炬林益明张立华
(1闽江学院地理科学系 福州 350108)
(2福建省林业科学研究院 福州 350012)
(3中国科学院烟台海岸带研究所 烟台 264003)
(4厦门大学生命科学学院 厦门 361005)
Author(s):
WU XilinYE GongfuZHANG ShangjuLIN YimingZHANG Lihua
(1Department of Geography, Minjiang College, Fuzhou 350108, China)
(2Fujian Academy of Forestry Sciences, Fuzhou 350012, China)
(3Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China)
(4School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China)
关键词:
海岸梯度短枝木麻黄金属元素养分再吸收率
Keywords:
coastal gradient Casuarina equisetifolia mineral element nutrient resorption efficiency
分类号:
Q945.79
DOI:
10.3724/SP.J.1145.2011.00645
文献标志码:
A
摘要:
对福建东山赤山林场不同海岸梯度上短枝木麻黄小枝中的钾(K)、钙(Ca)、镁(Mg)、钠(Na)、铁(Fe)、锰(Mn)和锌(Zn)元素含量及其再吸收率动态进行了研究. 结果表明,海岸梯度对短枝木麻黄小枝中各元素含量及其再吸收率均具有显著影响. 在各海岸梯度上,K再吸收率为正值,且基干林带的再吸收率显著低于其它样地,Fe和Zn为负值,Ca、Mg和Na再吸收率在防护林带前沿为负值,而在后沿林为正值,Mn则相反. 这表明,基干林带严重的环境胁迫显著降低了短枝木麻黄小枝的养分再吸收率. 短枝木麻黄成熟小枝中的K、Mg含量与其再吸收率存在显著正相关,而Na和Fe与其再吸收率存在显著负相关,其它元素与其再吸收率之间没有显著相关性. 除K外,各元素在衰老小枝中的含量与相应元素再吸收率之间均存在显著负相关,表明元素再吸收程度越高,其再吸收率就越高. Ca、Mg、Na和Fe再吸收率之间具有显著的正相关关系(P<0.01),Zn除与Mn再吸收率呈显著正相关外,与其它元素均表现为负相关,Mn则与其它元素再吸收率之间没有显著相关性. 因而短枝木麻黄小枝中不同类型的养分状况对其再吸收率具有不同的影响. 表5 参42
Abstract:
Contents of some mineral elements and their resorption efficiencies in Casuarina equisetifolia branchlets across a coastal gradient were studied at the Chishan Forestry Center of Dongshan County, Fujian Province, China. The results showed that the distance to coast had a significant effect on the contents of mineral elements and their resorption efficiencies. Resorption efficiencies of K element (REK) were all positive across the coastal gradient, with the lowest value found at the coastline sampling site, while Fe and Zn resorption efficiencies (REFe and REZn) were all negative across the coastal gradient. Ca, Mg and Na resorption efficiencies (RECa, REMg and RENa), which were contrary to Mn (REMn), were negative in seaward plantations and positive in inland plantations. It was suggested that the resorption efficiencies of the mineral nutrients significantly decreased with severer environmental stresses. There were also significant positive correlations between the K and Mg content and their resorption efficiencies in mature branchlets while the correlations between the Na and Fe content and their resorption efficiencies were significantly negative. In senescent branchlets, the content of all the elements and their resorption efficiencies except for K were negatively correlated. In addition, the correlation was positive between REZn and REMn, while negative between REZn and resorption efficiencies of other elements. No correlation was found between REMn and resorption efficiencies of other elements. These results showed that nutrient conditions in branchlets had different effects on their resoption efficiencies for different mineral nutrients. Tab 5, Ref 42

参考文献/References:

1 Killingbeck KT. The terminologial jungle revisited: making a case for use of the term resorption. Oikos, 1986, 46 (2): 263~264
2 Aerts R. Nutrient resorption from senescing leaves of perennials: Are there general patterns? J Ecol, 1996, 84 (4): 597~608
3 Killingbeck KT. Nutrients in senesced leaves: Keys to the search for potential resorption and resorption proficiency. Ecology, 1996, 77 (6): 1716~1727
4 van Heerwaarden LM, Toet S, Aerts R. Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization. J Ecol, 2003, 91 (6): 1060~1070
5 Aerts R, Cornelissen JHC, van Logtestijn RSP, Callaghan, TV. Climate change has only a minor impact on nutrient resorption parameters in a high-latitude peatland. Oecologia, 2007, 151 (1): 132~139
6 Zeng DH (曾德慧), Chen GS (陈广生), Chen FS (陈伏生), Zhao Q (赵琼), Ji XY (冀小燕). Foliar nutrient and their resorption efficiencies in four Pinus sylvestris var. mongolica plantations of different ages on sandy soil. Sci Sil Sin (林业科学), 2005, 41 (5): 21~27
7 Aerts R. Nutrient use efficiency in evergreen and deciduous species from heathlands. Oecologia, 1990, 84 (3): 391~397
8 May JD, Killingbeck KT. Effects of preventing nutrient resorption on plant fitness and foliar nutrient dynamics. Ecology, 1992, 73 (5): 1868~1878
9 Santa RI, Rico M, Rapp M, Gallego HA. Seasonal variation in nutrient concentration in leaves and branches of Quercus pyrenaica. J Veg Sci, 1997, 8 (5): 651~654
10 Wang WQ (王文卿), Lin P (林鹏). Studies on the nutrient retranslocation efficiencies during leaf senescence. J Wuhan Bot Res (武汉植物学研究), 1999, (Suppl): 117~122
11 Lal CB, Annapurna C, Raghubanshi AS, Singh JS. Effect of leaf habit and soil type on nutrient resorption and conservation in woody species of a dry tropical environment. Can J Bot, 2001, 79 (9): 1066~1075
12 Yuan ZY, Li LH, Han XG, Huang, JH, Jiang, GM, Wan, SQ, Zhang WH, Chen QS. Nitrogen resorption from senescing leaves in 28 plant species in a semi-arid region of northern China. J Arid Environ, 2005, 63 (1): 191~202
13 Chen X (陈欣), Yu WT (宇万太), Zhang L (张璐), Yin XY (殷秀岩), Shen SM (沈善敏). Comparative study on internal and external nutrient cyclings of poplar tree under different fertilizations II. Effect of fertilization on concentration and storage of major nutrients in poplar leaves before and after leaf fallen. Chin J Appl Ecol (应用生态学报), 1995, 6 (4): 346~348
14 Shen SM (沈善敏), Yu WT (宇万太), Zhang L (张璐), Lian HZ (廉鸿志). Internal and external nutrient cyclings of poplar tree I. Changes of nutrient storage in different parts of poplar tree before and after fallen. Chin J Appl Ecol (应用生态学报), 1992, 3 (4): 296~301
15 Shen SM (沈善敏), Yu WT (宇万太), Zhang L (张璐), Lian HZ (廉鸿志). Internal and external nutrient cyclings of poplar tree II. Transferring and cycling of nutrients in and out of the tree before and after leaf fallen. Chin J Appl Ecol (应用生态学报), 1993, 4 (1): 27~31
16 Yu WT (宇万太), Chen X (陈欣), Zhang L (张璐), Yin XY (殷秀岩), Shen SM (沈善敏). Comparative study on internal and external nutrient cyclings of poplar tree under different fertilizations I. Effect of fertilization on biomass of poplar tree and its internal and external cycling of N before and after leaf fallen. Chin J Appl Ecol (应用生态学报), 1995, 6 (4): 341~345
17 He WM (何维明), Zhang XS (张新时). Response of Sabina vulgaris to nutrient responses in the contrasting habitats in the Mu Us sandland. Sci Sil Sin (林业科学), 2002, 38 (5): 1~6
18 Zhang LH (张立华), Lin YM (林益明), Ye GF (叶功富), Yin L (殷亮), Zhou HC (周海超). Nitrogen and phosphorus concentrations, N:P ratio and resorption efficiency of leaves in different forest types. J Beijing For Univ (北京林业大学学报), 2009, 31 (5): 67~71
19 Ye GF (叶功富), Zhang LH (张立华), Lin YM (林益明), Wang H (王亨), Zhou HC (周海超), Zeng Q (曾琦). Seasonal dynamics of nitrogen and phosphorus concentrations, and nutrient resorption efficiencies of Casuarina equisetifolia branchlets in Dongshan County, Fujian. Acta Ecol Sin (生态学报), 2009, 29 (12): 6519~6526
20 Zhang LH, Lin YM, Ye GF, Liu XW, Lin GH. Changes in the N and P concentrations, N:P ratios, and tannin content in Casuarina equisetifolia branchlets during development and senescence. J For Res, 2008, 13 (5): 302~311
21 Lin YM, Peng ZQ, Lin P. Dynamics of leaf mass, leaf area and element retranslocation efficiency during leaf senescence in Phyllostachys pubescens. Acta Bot Sin, 2004, 46 (11): 1316~1323
22 Lin YM, Sternberg LDL. Nitrogen and phosphorus dynamics and nutrient resorption of Rhizophora mangle leaves in south Florida, USA. Bull Mar Sci, 2007, 80 (1): 159~169
23 Wang WQ, Wang M, Lin P. Seasonal changes in element contents in mangrove element retranslocation during leaf senescene. Plant Soil, 2003, 252 (2): 187~193
24 Hagen-Thorn A, Varnagiryte I, Nihlgard B, Armolaitis K. Autumn nutrient resorption and losses in four deciduous forest tree species. For Ecol Manage, 2006, 228 (1~3): 33~39
25 Lortie CJ, Cushman JH. Effects of a directional abiotic gradient on plant community dynamics and invasion in a coastal dune system. J Ecol, 2007, 95 (3): 468~481
26 Zhang XP (张雪萍), Li CY (李春艳), Yin XQ (殷秀琴), Chen P (陈鹏). Relation between soil animals and nutrients in the differently used forest lands. Chin J Appl Environ Biol (应用与环境生物学报), 1999, 5 (1): 26~31
27 Li RH (李荣华), Wang SL (汪思龙), Wang QK (王清奎). Nutrient contents and resorption characteristics in needles of different age Pinus massoniana (Lamb.) before and after withering. Chin J Appl Ecol (应用生态学报), 2008, 19 (7): 1443~1447
28 Oleksyn J, Reich PB, Zytkowiak R, Karolewski P, Tjoelker MG. Needle nutrients in geographically diverse Pinus sylvestris L. population. Ann Forest Sci, 2002, 59: 1~18
29 Robert B, Caritat AGB, Vilar L, Molinas M. Nutrient content and seasonal fluctuations in the leaf component of cork-oak (Quercus suber L.) litterfall. Vegetatio, 1996, 122: 29~35
30 Helmisaari HS. Nutrient retranslocation within the foliage of Pinus sylvestris. Tree Physiol, 1992, 10 (1): 45~58
31 Zou BJ (邹邦基), He XH (何雪辉.). Nutrition of Plant. Beijing, China: Science Press (北京: 科学出版社), 1985. 191~202
32 Fife DN, Nambiar EKS, Saur E. Retranslocation of foliar nutrients in evergreen tree species planted in a Mediterranean environment. Tree Physiol, 2008, 28 (2): 187~196
33 Del Arco JM, Escudero A, Garrido VM. Effects of site characteristics on nitrogen retranslocation from senescing leaves. Ecology, 1991, 72 (2): 701~708
34 Wright IJ, Westoby M. Nutrient concentration, resorption and lifespan: Leaf traits of Australian sclerophyll species. Funct Ecol, 2003, 17 (1): 10~19
35 Kobe RK, Lepczyk CA, Iyer M. Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology, 2005, 86 (10): 2780~2792
36 Kutbay HG, Ok T, Bilgin A, Yalcin E. Seasonal nutrient levels and foliar resorption in Juniperus phoenicea. Belg J Bot, 2005, 138 (1): 67~75
37 Knecht MR, Goransson A. Terrestrial plants require nutrients in similar proportions. Tree Physiol, 2004, 24 (4): 447~460
38 Quested HM, Cornelissen JHC, Press MC, Callaghan TV, Aerts R, Trosien F, Riemann P, Gwynn-Jones D, Kondratchuk A, Jonasson SE. Decomposition of sub-arctic plants with differing nitrogen economies: A functional role for hemiparasites. Ecology, 2003, 84 (12): 3209~3221
39 Moretto AS, Distel RA. Decomposition of and nutrient dynamics in leaf litter and roots of Poa ligularis and Stipa gyneriodes. J Arid Environ, 2003, 55 (3): 503~514
40 Ye GF (叶功富), Long XW (隆学武), Pan HZ (潘惠忠), Xu JS (徐俊森), Lin WX (林武星), Zhu W (朱炜), Huang CY (黄传英). Dynamics of litter and its decomposition in Casuarina equisetifolia plantation. Prot For Sci Tech (防护林科技), 1996 (Special Issue): 30~34, 76
41 Zhang LH (张立华), Ye GF (叶功富), Lin YM (林益明), Hou J (侯杰), Lu CY (卢昌义), Zeng GQ (曾国强). Production, decomposition and turnover of fine roots in Casuarina equisetifolia plantation. Chin J Eco-Agric (中国生态农业学报), 2008, 16 (1): 20~24
42 Ye GF (叶功富), Zhang LH (张立华), Hou J (侯杰), Lu CY (卢昌义), Wu LQ (吴柳清), Li XM (李秀明). Fine root biomass and dynamics of Casuarina equisetifolia plantations on coastal sandy soil. Chin J Appl Environ Biol (应用与环境生物学报), 2007, 13 (4): 481~485

备注/Memo

备注/Memo:
国家“十一五”重大科技支撑计划项目(No. 2009BADB2B0302)资助
更新日期/Last Update: 2011-10-25