|本期目录/Table of Contents|

[1]朱丽薇,赵平,倪广艳,等.荷木树干CO2释放通量的个体间差异及树干液流的效应[J].应用与环境生物学报,2011,17(04):447-452.[doi:10.3724/SP.J.1145.2011.00447]
 ZHU Liwei,ZHAO Ping,NI Guangyan,et al.Differences of Stem CO2 Efflux Among Individual Trees of Schima superba and Effects of Sap Flow[J].Chinese Journal of Applied & Environmental Biology,2011,17(04):447-452.[doi:10.3724/SP.J.1145.2011.00447]
点击复制

荷木树干CO2释放通量的个体间差异及树干液流的效应()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
17卷
期数:
2011年04期
页码:
447-452
栏目:
研究论文
出版日期:
2011-08-25

文章信息/Info

Title:
Differences of Stem CO2 Efflux Among Individual Trees of Schima superba and Effects of Sap Flow
作者:
朱丽薇赵平倪广艳蔡锡安曾小平邹绿柳梅婷婷余孟好
(1中国科学院华南植物园 广州 510650)
(2中国科学院研究生院 北京 100049)
Author(s):
ZHU Liwei ZHAO Ping NI Guangyan CAI Xi’an ZENG Xiaoping ZOU Lüliu MEI Tingting YU Menghao
(1South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China)
(2Graduate University of Chinese Academy of Sciences, Beijing 100049, China)
关键词:
荷木树干CO2释放通量树干温度液流速度Q10
Keywords:
Schima superba stem CO2 efflux stem temperature sap flow velocity Q10
分类号:
Q945.19
DOI:
10.3724/SP.J.1145.2011.00447
文献标志码:
A
摘要:
为研究荷木(Schima superba)个体间树干CO2释放通量(Es)的差异以及树干液流对Es的影响,提高森林生态系统呼吸计算准确性,利用红外气体分析仪及自制式气室于2009年湿季和干季监测了华南荷木人工林5棵样树的Es,并同步监测了树干温度(θs)、气温及液流密度. 结果显示:θs与气温之间呈显著线形正相关;Es与树干温度之间存在显著指数函数关系;Es干湿季的差异显著,并呈现明显的季节变化;5株样树之间Es存在显著差异,平均Es分别为3.12、3.60、5.52、6.98、8.09 μmol m-2 s-1;同时,样树之间树干CO2释放通量的温度系数(Q10)差异显著(1.97~4.24之间). Tree1、Tree2和Tree4白天的Es与液流速度(v)显著正相关,白天的标准化树干CO2释放通量(R25,温度为25 ℃时的Es)高于晚上. 荷木Es个体之间及时间上的差异主要受树干温度、生长状况和液流速度的影响. 图3 表6 参35
Abstract:
The differences of stem CO2 efflux (Es) among individual trees and effects of sap flow on Es have affected the accuracy when calculating the respiration of a forest ecosystem. In a Schima superba plantation forest in southern China, infrared gas analyzer and self-made chamber were applied to measure the stem CO2 efflux of five sampled trees, with stem temperature (θs), air temperature and sap flow density recorded synchronously in wet and dry seasons in 2009. The results showed that θs was positively linear-correlated to air temperature, while Es was exponentially related to θs. Es was found significantly different between July and October, indicating a clear seasonal variation. Es was significantly different among 5 sampled trees, and mean Es were 3.12, 3.60, 5.52, 6.98 and 8.09 μmol m-2 s-1, respectively. In the meantime, Q10 also significantly differed among the sampled tree individuals ranging from 1.97 to 4.24. Es of Tree1, Tree2 and Tree4 had a significant correlation with sap flow velocity at daytime, which resulted in higher standardized stem CO2 efflux (R25, Es at 25℃) than that at night. Both the variation of Es among the individual S. superba, and the Es changes based on the timing of measurements can mainly be explained with stem temperature, growth status and sap flow velocity. Fig 3, Tab 6, Ref 35

参考文献/References:

1 Sprugel DG, Benecke U. Measuring woody-tissue respiration and photosynthesis. In: Lassoie JP, Hinckley TM eds. Techniques and Approaches in Forest Tree Ecophysiology. Boca Raton, FL, USA: CRC Press, 1991. 329~355
2 Ryan MG, Linder S, Vose JM, Hubbard RM. Dark respiration of pines. Ecol Bull, 1994, 43: 50~63
3 Edwards NT, Hanson PJ. Stem respiration in a closed-canopy upland oak forest. Tree Physiol, 1996, 16 (4): 433~439
4 Waring RH, Schlesinger WH. Forest Ecosystems: Concepts and Management. Orlando, USA: Academic Press, 1985
5 Teskey RO, McGuire MA. Carbon dioxide transport in xylem causes errors in estimation of rates of respiration in stems and branches of trees. Plant Cell Environ, 2002, 25 (11): 1517~1577
6 Cerasoli S, McGuire MA, Faria J, Mourato M, Schmidt M, Pereira JS, Chaves MM, Teskey RO. CO2 efflux, CO2 concentration and photosynthetic refixation in stems of Eucalyptus globulus (Labill.). J Exp Bot, 2009, 60 (1): 99~105
7 Teskey RO, Saveyn A, Steppe K, McGiure MA. Origin, fate and significance of CO2 tree stems. New Phytol, 2008, 177 (1): 17~32
8 Zhu LW (朱丽薇), Zhao P (赵平), Cai XA (蔡锡安), Zeng XP (曾小平), Zou LL (邹绿柳). Schima superba stem CO2 efflux and its relation to xylem sap flux density and xylem CO2 concentration. Chin J Ecol (生态学杂志), 2010, 28 (11): 2227~2232
9 Zhao P (赵平), Hölscher D. The concentration and efflux of tree stem and the role of xylem sap flow. Front Biol China, 2009, 4 (1): 47~54
10 Cavaleri MA, Oberbauer SF, Ryan MG. Wood CO2 efflux in a primary tropical rain forest. Global Change Biol, 2006, 12 (12): 2442~2458
11 Meir P, Grace J. Scaling relationships for woody tissue respiration in two tropical rain forests. Plant Cell Environ, 2002, 25 (8): 963~973
12 Stockfors J. Temperature variations and distribution of living cells within tree stems: Implications for stem respiration modeling and scale-up. Tree Physiol, 2000, 20 (15): 1057~1062
13 Ceschia E, Damesina C, Lebaube S, Pontailler JY, Dufrene E. Spatial and seasonal variations in stem respiration of beech trees (Fagus sylvatica). Ann For Sci, 2002, 59 (8): 801~812
14 Bowman WP, Barbour MM, Turnbull MH, Tissue DT, Whitehead D, Griffin KL. Sap flow rates and sapwood density are critical factors in within- and between-tree variation in CO2 efflux from stems of mature Dacrydium cupressinum trees. New Phytol, 2005, 167 (3): 815~828
15 Maier CA, Johnsen KH, Clinton BD, Ludovici KH. Relationships between stem CO2 efflux, substrate supply, and growth in young loblolly pine trees. New Phytol, 2010, 185 (2): 502~513
16 Saveyn A, Steppe K, McGuire MA, Lemeur R, Teskey RO. Stem respiration and carbon dioxide efflux of young Populus deltoids trees in relation to temperature and xylem carbon dioxide concentration. Oecologia, 2008, 154 (4): 637~649
17 Levy PE, Meir P, Allen SJ, Jarvis PG. The effect of aqueous transport of CO2 in xylem sap on gas exchange in woody plants. Tree Physiol, 1999, 19 (1): 53~58
18 Meinzer FC, Goldstein G, Andrade JL. Regulation of water flux through tropical forest canopy trees: Do universal rules apply? Tree Physiol, 2001, 21 (1): 19~26
19 Andrade JL, Meinzer FC, Goldstein G, Holbrook NM, Cavelier J, Jackson P, Silvera K. Regulation of water flux through trunks, branches, and leaves in trees of a lowland tropical forest. Oecologia, 1998, 115 (4): 463~471
20 O’Brien JJ, Oberbauer SF, Clark DB. Whole tree xylem sap flow responses to multiple environmental variables in a wet tropical forest. Plant Cell Environ, 2004, 27 (5): 551~567
21 Saveyn A, Steppe K, McGuire MA, Lemeur R, Teskey RO. Stem respiration and carbon dioxide efflux of young Populus deltoids trees in relation to temperature and xylem carbon dioxide concentration. Oecologia, 2008, 154 (4): 637~649
22 Acosta M, Pavelka M, Pokorny R, Janou? D, Marek MV. Seasonal variation in CO2 efflux of stems and branches of Norway spruce trees. Ann Bot, 2008, 101 (3): 469~477
23 Zhao P (赵平), Rao XQ (饶兴权), Ma L (马玲), Zeng XP (曾小平). Application of Granier’s sap flow system in water use of Acacia mangium forest. J Trop Subtrop Bot (热带亚热带植物学报), 2005, 13 (6): 457~468
24 Harris NL, Hall CAS, Lugo AE. Estimates of species- and ecosystem- level respiration of woody stems along an elevational gradient in the Luquillo Mountains, Puerto Rico. Ecol Model, 2008, 216 (3/4): 253~264
25 Martin TA, Brown KJ, Cermák J, Ceulemans R, Kucera J, Meinzer FC, Rombold JS, Sprugel DG, Hinckley TM. Crown conductance and tree and stand transpiration in a second-growth Abies amabilis forest. Can J For Res, 1997, 27 (6): 797~808
26 Levy PE, Jarvis PG. Stem CO2 fluxes in two Sahelian shrub species (Guiera senegalensis and Combretum micranthum). Funct Ecol, 1998, 12 (1): 107~116
27 McGuire MA, Cerasoli S, Teskey RO. CO2 fluxes and respiration of branch segments of sycamore (Platanus occidentalis L.) examined at different sap velocities, branch diameters, and temperatures. J Exp Bot, 2007, 58 (8): 2159~2168
28 Law BE, Ryan MG, Anthoni PM. Seasonal and annual respiration of a ponderosa pine ecosystem. Global Change Biol, 1999, 5 (2): 169~182
29 Lavigne MB, Franklin SE, Hunt ER. Estimating stem maintenance respiration rates of dissimilar balsam fir stands. Tree Physiol, 1996, 16 (8): 687~695
30 Ryan MG, Waring RH. Maintenance respiration and stand development in a subalpine lodgepole pine forest. Ecology, 1992, 73 (6): 2100~2108
31 Yan YP (严玉平), Sha LQ (沙丽清), Cao M (曹敏). Stem respiration characteristics of rubber (Hevea brasiliensis) plantations in Xishuangbanna. Acta Ecol Sin (生态学报), 2009, 29 (4): 1840~1848
32 Zha T, Kellomäki S,Wang KY, Ryyppö A, Niinistö S. Seasonal and annual stem respiration of Scots pine trees under boreal condition. Ann Bot, 2004, 94 (6): 889~896
33 Amthor JS. Plant respiratory responses to the environmental and their effects on the carbon balance. In: Wilkinson RE ed. Plant-environment Interactions. New York, USA: Dekker, 1994. 501~554
34 Gielen B, Scarascia MG, Ceulemans R. Stem respiration of Populus species in the third year of free-air CO2 enrichment. Physiol Plant, 2003, 117 (4): 500~507
35 Kim MH, Nakane K, Lee JT, Bang HS, Na YE. Stem/branch maintenance respiration of Japanese red pine stand. For Ecol & Manage, 2007, 243 (2/3): 283~290

相似文献/References:

[1]周娟,赵平,朱丽薇,等.荷木(Schima superba)水力导度的干湿季变化及个体差异[J].应用与环境生物学报,2015,21(02):333.[doi:10.3724/SP.J.1145.2014.10011]
 ZHOU Juan,ZHAO Ping,ZHU Liwei,et al.Wet-dry seasonal patterns and inter-tree variation of hydraulic conductance of Schima superba[J].Chinese Journal of Applied & Environmental Biology,2015,21(04):333.[doi:10.3724/SP.J.1145.2014.10011]

备注/Memo

备注/Memo:
国家自然科学基金项目(Nos. 30770328,30871998,41030638)和广东省自然科学基金项目(No. 07006917)资助
更新日期/Last Update: 2011-08-16