|本期目录/Table of Contents|

[1]袁颖红,樊后保,李燕燕,等.模拟氮沉降对土壤酸化和土壤盐基离子含量的影响[J].应用与环境生物学报,2011,17(04):461-466.[doi:10.3724/SP.J.1145.2011.00461]
 YUAN Yinghong,FAN Houbao,LI Yanyan,et al.Effects of Simulated N Deposition on Soil Acidification and Content of Base Cations[J].Chinese Journal of Applied & Environmental Biology,2011,17(04):461-466.[doi:10.3724/SP.J.1145.2011.00461]
点击复制

模拟氮沉降对土壤酸化和土壤盐基离子含量的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
17卷
期数:
2011年04期
页码:
461-466
栏目:
研究论文
出版日期:
2011-08-25

文章信息/Info

Title:
Effects of Simulated N Deposition on Soil Acidification and Content of Base Cations
作者:
袁颖红樊后保李燕燕刘文飞廖迎春沈芳芳黄荣珍
(1南昌工程学院生态与环境科学研究所 南昌 330099)
(2江西农业大学园林与艺术学院 南昌 330045)
Author(s):
YUAN Yinghong FAN Houbao LI Yanyan LIU Wenfei LIAO Yingchun SHEN Fangfang HUANG Rongzhen
(1Institute of Ecology & Environmental Sciences, Nanchang Institute of Technology, Nanchang 330099, China)
(2College of Landscape and Art, Jiangxi Agricultural University, Nanchang 330045, China)
关键词:
氮沉降土壤酸化盐基离子阳离子交换量盐基饱和度
Keywords:
nitrogen deposition soil acidification base cation CEC base saturation percentage
分类号:
S714.2 S154.2
DOI:
10.3724/SP.J.1145.2011.00461
文献标志码:
A
摘要:
在温室内对1年生盆栽杉木幼苗进行模拟试验,以研究氮沉降对土壤酸化和土壤盐基离子含量的影响. 以NH4NO3为外加氮源,设置5种处理,分别为N0(对照,0 g m-2 a-1,以N计,下同)、N1(6 g m-2 a-1)、N2(12 g m-2 a-1)、N3(24 g m-2 a-1)和 N4(48 g m-2 a-1),每处理重复6次. 经过18个月的处理后,对盆栽土壤进行取样分析. 结果显示,随着氮沉降量的增加,土壤pH值逐渐下降,而土壤交换性酸度和交换性Al3+则不断增加. 经N1、N2、N3和N4处理后,土壤交换性盐基总量分别下降6.29%、8.94%、10.07%和10.38%,土壤阳离子交换量分别下降5.07%、7.27%、8.53%和8.83%. 随氮沉降量的增加,土壤NH4+-N、NO3--N含量逐渐增加. 低氮处理(N1、N2)使土壤交换性K+、Ca2+、Mg2+含量增加,而高氮处理(N3、N4)则呈相反趋势. 氮沉降由于增加了土壤活性氮的含量,加速了土壤酸化,从而导致了盐基离子的淋失. 图3 表3 参41
Abstract:
In order to study the effects of nitrogen deposition on soil acidification and soil base cations, a pot experiment was conducted in greenhouse. The treatments were designed as N0 (control), N1, N2, N3 and N4 at the doses of 0, 6, 12, 24 and 48 g N m-2 a-1, respectively, with six replicates in each treatment. NH4NO3 was used as the source of nitrogen. The results showed that soil pH decreased with increasing nitrogen deposition, but soil total exchangeable acid (TEA) and exchangeable aluminum (EA) increased after incubating of 18 months. The total base cations in soils with N1, N2, N3 and N4 treatments decreased by 6.29%, 8.94%, 10.07% and 10.38%, respectively, and soil cation exchange capacity (CEC) decreased by 5.07%, 7.27%, 8.53% and 8.83%, respectively. The contents of NH4+-N and NO3--N in soil increased with increasing nitrogen deposition. Low nitrogen deposition (N1, N2) accelerated increasing of soil exchangeable K+, Ca2+ and Mg2+, but high nitrogen deposition (N3, N4) was opposite. Because increasing of soil active nitrogen, nitrogen deposition accelerated soil acidification, accordingly which resulted in leaching of soil base cations. Fig 3, Tab 3, Ref 41

参考文献/References:

1 Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG. Human alteration of the global nitrogen cycle: Sources and consequences. Ecol Appl, 1997, 7 (3): 737~750
2 Galloway JN, Cowling EB. Reactive nitrogen and the world: 200 years of change. Ambio, 2002, 31: 64~71
3 Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ. The nitrogen cascade. Bioscience, 2003, 53 (4): 341~356
4 Fenn ME, Poth MA, Bormann BT, Johnson DW, Lemly AD, McNulty SG, Ryan DF, Stottlemyer R. Nitrogen excess in North American ecosystems: Predisposing factors, ecosystem responses, and management strategies. Ecol Appl, 1998, 8: 706~733
5 Wright RF, van Breemen N. The NITREX project: an introduction. For Ecol Manage, 1995, 71 (1/2): 1~5
6 Wright RF, Roelofs JGM, Bredemeier M, Blanck K, Boxman AW, Emmett BA, Gundersen P, Hultberg H, Kjönaas OJ, Moldan F, Tietema A, Breemen N, Dijk HFG. NITREX: Responses of coniferous forest ecosystems to experimentally changed deposition of nitrogen. For Ecol Manage, 1995, 71 (1/2): 163~169
7 Wright RF, Rasmussen L. Introduction to the NITREX and EXMAN projects. For Ecol Manage, 1998, 101 (1~3): 1~7
8 Fang H (方华), Mo JM (莫江明). Effects of nitrogen deposition on forest litter decomposition. Acta Ecol Sin (生态学报), 2006, 26 (9): 3127~3136.
9 Mo JM, Xue JH, Fang YT. Litter decomposition and its responses to simulated N deposition for the major plants of Dinghushan forests in subtropical China. Acta Ecol Sin, 2004, 24 (7): 1413~1420
10 Holland EA, Dentene FJR, Braswell BH, Sulzman JM. Contemporary and preindustrial global reactive nitrogen budgets. Biogeochem, 1999, 46: 7~43
11 Fang YT (方运霆), Mo JM (莫江明), Per Gundersen, Li DJ (李德军), Jiang YQ (江远清). Nitrogen transformations in forest soils and its responses to atmospheric nitrogen deposition: a review. Acta Ecol Sin (生态学报), 2004, 24 (7): 1523~1531
12 Chen XY, Mulder J, Wang YH, Zhao DW, Xiang RJ. Atmospheric deposition, mineralization and leaching of nitrogen in subtropical forested catchments, South China. Environ Geochem Health, 2004, 26: 179~186
13 Fang YT (方运霆), Mo JM (莫江明), Jiang YQ (江远清), Li DJ (李德军). Acidity and inorganic nitrogen concentrations in soil solution in short~term response to N addition in subtropical forests. J Trop Subtrop Bot (热带亚热带植物学报), 2005, 13 (2) : 123~129
14 Fang YT (方运霆), Mo JM (莫江明), Zhou GY (周国逸). Response of soil NO3-N dynamics to N additions in Dinghushan forests, assessed by ion-exchange resin bag method. Ecol Environ Sci (生态环境), 2005, 14 (4): 483~487
15 Liu WF (刘文飞), Fan HB (樊后保), Zhang ZW (张子文), Yang YL (杨跃霖), Wang QQ (王启其), Xu L (徐雷). Foliar nutrient contents of Chinese fir in response to simulated nitrogen deposition. Chin J Appl Environ Biol (应用与环境生物学报), 2008, 14 (3): 319~323
16 Fenn ME, Poth MA , Aber JD, Baron JS, Bormann BT, Johnson DW, Lemly AD, McNulty SG, Ryan DF, Stottlemyer R. Nitrogen excess in north American ecosystems: Predisposing factors, ecosystem responses, and management strategies. Ecol Appl, 1998, 8: 706~733
17 Wright RF, Rasmusse NL. Introduction to the NITREX and EXMAN projects. For Ecol Manage, 1998, 101 (1/3): 1~7
18 Gundersen P, Emmett BA, Kjonass OJ, Koopmans CJ, Tietema A. Impact of nitrogen deposition on nitrogen cycling in forest: Asynthesis of NITREX data. For Ecol Manage, 1998, 101 (1~3): 37~55
19 Aber J. Nitrogen saturation in temperate forest ecosystems: Hypotheses revisited. Bioscience, 1998, 48: 921~934
20 LU RK (鲁如坤). Analytical Methods of Soil and Agro-chemistry. Beijing, China: Chinese Agriculture Science and Technology Press (北京: 中国农业科学技术出版社), 1999
21 Matson PA, McDowell WH, Townsend AR, Vitousek PM. The globalization of N deposition: Ecosystem consequences in tropical environments. Biogeochem, 1999, 46: 67~83
22 Aber J D, Magaill A H, Boone R, Melillo JM, Steudler P. Plant and soil responses to chronic nitrogen additions at the Harvard forest, Massachusetts. Ecol Appl, 1993, 3: 156~166
23 Throop HL, Holland EA, Parton WL, Ojima DS, Keough CA. Effect of nitrogen deposition and insect herbivory on patterns of ecosystem~level carbon and nitrogen dynamics: Results from the CENTURY model. Global Chang Biol, 2004, 10: 1092~1105
24 Sun BH (孙本华), Hu ZY (胡正义), Lü JL (吕家珑), Zhou LN (周丽娜), Xu CK (徐成凯). Nutrient leaching and acidification of southern China coniferous forest red soil under stimulated N deposition. Chin J Appl Ecol (应用生态学报), 2006, 17 (10): 1820~1826
25 Trine AS, Gunnar A. Effects of N and S deposition on leach ing from an acid forest soil and grow th of Scats pine (Pinus sylvestris L.) after 5 years of treatment. For Ecol Manage, 1998, 103: 177~190
26 Tian RS (田仁生), Liu HT (刘厚田). Aluminum in acidic soils and its phytotoxicity. Environ Sci (环境科学), 1990, 11 (6): 41~46
27 Liu JX (刘菊秀). Effect of aluminum toxicity on forests under acid deposition. J Trop Subtrop Bot (热带亚热带植物学报), 2000, 8 (3): 269~274
28 Cao HF (曹洪法), Gao JX (高吉喜), Shu JM (舒俭民). Study on the response of Pinus massoniana seedling to aluminum. Acta Ecol Sin (生态学报), 1992, 12 (3): 239~246
29 Ulrich B. Effects of Accumulation Air Pollutants in Forest Ecosystem. Dordrecht, the Netherland: Reided Publishing Company, 1983
30 Yu YC (俞元春), Ding AF (丁爱芳). Effects of simulated acid rain on dissolution and transformation of aluminum in acid soils of south China. Soil Environ Sci (土壤与环境), 2001, 10 (2): 87~90
31 Wang WJ (王维君), Chen JF (陈家坊), He Q (何群). Effects of simulated acid rain on release and forms of aluminum from main acidic soils. Chin J Appl Ecol (应用生态学报), 1992, 3 (2): 184~189
32 Wang SL (王水良), Wang P (王平), Wang JY (王趁义), Dai JY (戴建远). Chemical behavior of aluminum in the acidic rhizosphere of Pinus massoniana Lamb - A case study on its cultivation in acid forest soil in Chongqing, China. Chin J Appl Environ Biol (应用与环境生物学报), 2010, 16 (4): 523~528
33 Huang CY (黄昌勇). Soil Science. Beijing: China Agriculture Press (北京: 中国农业出版社), 2000. 286~287
34 Singh B, Singh AP. Fixation of potassium in soil as affected by an ammoniacal fertilizer. Soil Sci Soc India J, 1979, 27 (3): 272~276
35 Fan QZ (范钦桢). Influence of ammonium on release and fixation of potassium in soil. Acta Pedo Sin (土壤学报), 1993, 30 (3): 246~251
36 Fox TR. Nitrogen mineralization following fertilization of Douglas~fir forests with urea in western Washington. Soil Sci Soc Am J, 2004, 68: 1720~1728
37 Li P (李平), Wang XX (王兴祥). Effects of leaching with low molecular weight organic acids on soil pH and exchangeable aluminum. Soils (土壤), 2005, 37 (6): 669~673
38 Sun BH (孙本华), Hu ZY (胡正义), Lü JL (吕家珑), Zhou LN (周丽娜), Xu CK (徐成凯). Effects of simulated N deposition on cation leaching from red soil in southern. J Soil Water Conservation (水土保持学报), 2007, 21 (2): 18~21
39 Mcfee WW. Sensitivity ratings of soil to acid deposition. Environ Exp Bot, 1983, 25 (3): 203~210
40 Liao BH (廖柏寒), Dai ZH (戴昭华). Soil buffering capacity to acid precipitation and weathering characteristics of soil minerals. Acta Sci Circums (环境科学学报), 1991, 11 (4): 425~431
41 Hogberg P, Fan HB, Quist M, Binkley D, Tamm CO. Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Global Chang Biol, 2006, 12: 489~499

相似文献/References:

[1]李化山,汪金松,法蕾,等.模拟氮沉降对油松幼苗生长的影响[J].应用与环境生物学报,2013,19(05):774.[doi:10.3724/SP.J.1145.2013.00774]
 LI Huashan,WANG Jinsong,FA Lei & ZHAO Xiuhai.Effects of Simulated Nitrogen Deposition on Seedling Growth of Pinus tabulaeformis[J].Chinese Journal of Applied & Environmental Biology,2013,19(04):774.[doi:10.3724/SP.J.1145.2013.00774]
[2]陈瑶,王法明,莫其锋,等.氮磷添加对华南热带森林尾叶桉木质残体分解和养分动态的影响[J].应用与环境生物学报,2015,21(04):743.[doi:10.3724/SP.J.1145.2015.01056]
 CHEN Yao,WANG Faming,MO Qifeng,et al.Effects of nitrogen and phosphorus additions on woody debris decomposition in a secondary tropical forest of South China[J].Chinese Journal of Applied & Environmental Biology,2015,21(04):743.[doi:10.3724/SP.J.1145.2015.01056]
[3]彭勇,陈刚,陈冠陶,等.模拟氮沉降对瓦屋山常绿阔叶次生林土壤呼吸的影响[J].应用与环境生物学报,2015,21(04):733.[doi:10.3724/SP.J.1145.2015.01023]
 PENG Yong,CHEN Gang,CHEN Guantao,et al.Effects of simulated nitrogen deposition on soil respiration in a secondary evergreen broad-leaved forest on Wawushan Mountain[J].Chinese Journal of Applied & Environmental Biology,2015,21(04):733.[doi:10.3724/SP.J.1145.2015.01023]
[4]陈晶,康峰峰,程小琴,等.太岳山华北落叶松林土壤呼吸特征对模拟氮硫沉降的短期响应[J].应用与环境生物学报,2016,22(22卷04):646.[doi:10.3724/SP.J.1145.2015.11027]
 CHEN Jing,KANG Fengfeng,CHENG Xiaoqin,et al.Short-term response of soil respiration to simnlated nitrogen and sulfue deposition in Larix principis-rupprechtii plantation in Taiyue Mountain, China*[J].Chinese Journal of Applied & Environmental Biology,2016,22(04):646.[doi:10.3724/SP.J.1145.2015.11027]
[5]杨开军,杨万勤,庄丽燕,等.四川盆地西缘都江堰大气氮素湿沉降特征[J].应用与环境生物学报,2018,24(01):107.[doi:10.19675/j.cnki.1006-687x.2017.04001]
 YANG Kaijun,YANG Wanqin,ZHUANG Liyan,et al.Characteristics of atmospheric wet nitrogen deposition in Dujiangyan, western edge of Sichuan Basin[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):107.[doi:10.19675/j.cnki.1006-687x.2017.04001]
[6]陈冠陶,李顺,彭天驰,等.根系隔离和氮添加对湿性常绿阔叶林土壤碳氮组分的影响[J].应用与环境生物学报,2018,24(01):125.[doi: 10.19675/j.cnki.1006-687x.2017.04021]
 CHEN Guantao,LI Shun,PENG Tianchi,et al.Effect of root isolation and nitrogen addition on soil carbon and nitrogen component in a moist evergreen broad-leaved forest[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):125.[doi: 10.19675/j.cnki.1006-687x.2017.04021]
[7]铁烈华,符饶,张仕斌,等.华西雨屏区常绿阔叶林凋落叶分解过程中纤维素降解对模拟氮、硫沉降的响应[J].应用与环境生物学报,2019,25(01):16.[doi:10.19675/j.cnki.1006-687x.2018.03014]
 TIE Liehua,FU Rao,ZHANG Shibin,et al.Effects of simulated nitrogen and sulfur deposition on cellulose degradation during foliar litter decomposition in evergreen broad-leaved forest in the Rainy Area of West China[J].Chinese Journal of Applied & Environmental Biology,2019,25(04):16.[doi:10.19675/j.cnki.1006-687x.2018.03014]
[8]刘鑫铭,荣海,吴承祯,等.模拟氮沉降对温郁金养分吸收及生长的影响[J].应用与环境生物学报,2019,25(05):1122.[doi:10.19675/j.cnki.1006-687x.2018.12033]
 LIU Xinming,RONG Hai,WU Chengzhen**,et al.Effects of simulated nitrogen deposition on nutrient absorption and growth of Curcuma wenyujin Y. H. Chen et. C. Ling[J].Chinese Journal of Applied & Environmental Biology,2019,25(04):1122.[doi:10.19675/j.cnki.1006-687x.2018.12033]
[9]赵晓红,张佳腾,毛云飞,等.胶东富士果园土壤酸化定位检测及对果实品质的影响[J].应用与环境生物学报,2019,25(06):1359.[doi:10.19675/j.cnki.1006-687x.2019.01036]
 ZHAO Xiaohong,ZHANG Jiateng,MAO Yunfei,et al.Location detection for soil acidification and its effect on fruit quality of Fuji apples in an orchard in Jiaodong[J].Chinese Journal of Applied & Environmental Biology,2019,25(04):1359.[doi:10.19675/j.cnki.1006-687x.2019.01036]
[10]叶贺,红梅,赵巴音那木拉,等.水氮控制对短花针茅荒漠草原根系分解的影响[J].应用与环境生物学报,2020,26(05):1169.[doi: 10.19675/j.cnki.1006-687x.2019.07032]
 YE He,HONG Mei,ZHAO Bayinnamula,et al.Effects of water and nitrogen treatments on root decomposition in a Stipa breviflora desert steppe[J].Chinese Journal of Applied & Environmental Biology,2020,26(04):1169.[doi: 10.19675/j.cnki.1006-687x.2019.07032]

备注/Memo

备注/Memo:
国家自然科学基金项目(No. 30771714,31060109)、江西省自然科学基金项目(No. 0630101)、江西省科技支撑计划项目(赣财教[2007]173号)、江西省教育厅科技计划项目(赣教高字[2007]5号文件)和南昌工程学院青年基金(No. 2006KJ009)资助
更新日期/Last Update: 2011-08-16