|本期目录/Table of Contents|

[1]姜春雷,赵锐,吕林峰,等.茄科雷尔氏菌蛋白质相互作用网络预测及分析[J].应用与环境生物学报,2012,18(01):139-146.[doi:10.3724/SP.J.1145.2012.00139]
 JIANG Chunlei,ZHAO rui,LÜ,et al.Analysis and Prediction of Protein Interaction Network of Ralstonia solanacearum[J].Chinese Journal of Applied & Environmental Biology,2012,18(01):139-146.[doi:10.3724/SP.J.1145.2012.00139]
点击复制

茄科雷尔氏菌蛋白质相互作用网络预测及分析()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
18卷
期数:
2012年01期
页码:
139-146
栏目:
技术与方法
出版日期:
2012-02-25

文章信息/Info

Title:
Analysis and Prediction of Protein Interaction Network of Ralstonia solanacearum
作者:
姜春雷赵锐吕林峰乔代蓉曹毅
(四川大学生命科学学院四川省生物信息与代谢工程共享实验平台 成都 610064)
Author(s):
JIANG Chunlei ZHAO rui LÜ Lingfeng QIAO Dairong CAO Yi
(Sichuan Public Experiment Platform of Bioinformatics and Metabolic Engineering, College of Life Sciences, Sichuan University, Chengdu 610064, China)
关键词:
茄科雷尔氏菌蛋白质相互作用蛋白质功能蛋白质组学青枯病朴素贝叶斯模型
Keywords:
Ralstonia solanacearum protein interaction networks protein function proteomic bacterial wilt Naïve Bayes model
分类号:
S432 : Q936
DOI:
10.3724/SP.J.1145.2012.00139
文献标志码:
A
摘要:
细菌性青枯病是由茄科雷尔氏菌(Ralstonia solanacearum)引起的一种世界范围的细菌性土传病害. 该细菌基因组序列的完全测序,使得从蛋白质组角度来分析其蛋白质相互作用网络成为可能. 本文通过朴素贝叶斯模型整合系统发生谱法、基因邻近法、基因融合法、操纵子法、同源映射法、微阵列法、域相互作用法等7种方法,并根据约豋指数确定的阙值,预测了可信的茄科雷尔氏菌的蛋白质相互作用网络. 对网络中的分泌子网络和信号转导进行了分析,提出可能的药物作用靶点(cyaB、pilD、Fli、Rsp1526、VsrA、VsrB、PilH). 对于未注释的蛋白依据蛋白相互作用推测了部分蛋白质的功能. 本文也提供了完全免费的在线数据库支持,提供了方便的茄科雷尔氏菌的蛋白相互作用的查询及相互作用数据和推测的蛋白质功能数据的查询和下载(http://www.scbmp.org.cn/rsoppi.php). 图8 表1 参25
Abstract:
Bacterial wilt caused by Ralstonia solanacearum is a worldwide soil-borne bacterial diseases. The complete sequence of Ralstonia solanacearum genome make it possible to analysis the protein-protein interaction networks of R. solanacearum from the proteomic. In this paper, Naïve Bayes model was used to integrate seven kinds of methods (Phylogenetic profile, gene neighbor method, gene fusion, operon method, interolog, microarray, domain interactions) and predict protein interactions of R. solanacearum. The reliable networks were obtained based on threshold determined by Youden’s index. The secretion system and signal transduction system were analyzed and possible drug targets (cyaB, pilD, Fli, Rsp1526, VsrA, VsrB, PilH) were suggested. The function of proteins without comments in COG database was inferred according to protein-protein interaction. A completely free online database support was provided, including convenient queries and download for R. solanacearum protein interaction and function data (http://www.scbmp.org.cn/rsoppi.php). Fig 8, Tab 1, Ref 25

参考文献/References:

1 Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates D. Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles. Proc Natl Acad Sci USA, 1999, 96: 4285~4288
2 Overbeek R, Fonstein M, D’Souza M, Pusch GD, Maltsev N. The use of gene clusters to infer functional coupling. Proc Natl Acad Sci, 1999, 96: 2896~2901
3 Strong M, Mallick P, Pellegrini M, Thompson MJ, Eisenberg D. Inference of protein function and protein linkages in Mycobacterium tuberculosis based on prokaryotic genome organization: A combined computational approach. Genome Biol, 2003, 4: R59
4 Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D. Detecting protein function and protein-protein interactions from genome sequences. Science, 1999, 285: 751~753
5 Marcotte CJV, Marcotte EM. Predicting functional linkages from gene fusions with confidence. Appl Bioinformatics, 2002, 1 (2): 93~100
6 Matthews LR, Vaglio P, Reboul J, Ge H, Davis BP, Garrels J, Vincent S, Vidal M. Identification of potential interaction networks using sequence-based searches for conserved protein–protein interactions or “interologs”. Genome Res, 2001, 11 (12): 2120~2126
7 Ng SK, Zhang Z, Tan SH, Lin K. InterDom: A database of putative interacting protein domains for validating predicted protein interactions and complexes. Nucleic Acids Res, 2003, 31 (1): 251~254
8 Ge H, Liu Z, Church GM. Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nat Genet, 2001, 29 (4): 482~486
9 Sun JC, Xu JL, Liu Z, Liu Q, Zhao A, Shi TL, Li YX. Refined phylogenetic profiles method for predicting protein-protein interactions. Bioinformatics, 2005, 21 (16): 3409~3415
10 Date SV, Marcotte EM. Discovery of uncharacterized cellular systems by genome-wide analysis of functional linkages. Nat Biotechnol, 2003, 21 (9): 1055~1062
11 Dandekar T, Snel B, Huynen M, Bork P. Conservation of gene order: A fingerprint of proteins that physically interact. Trends Biochem Sci, 1998, 23 (9): 324~328
12 Yu H, Luscombe NM, Lu HX, Zhu X, Xia Y, Han JD, Bertin N, Chung S, Vidal M, Gerstein M. Annotation transfer etween genomes: Protein– protein interologs and protein-DNA regulogs. Genome Res, 2004, 14 (6): 1107~1118
13 Hand DJ, Yu K. Idiot’s Bayes-not so stupid after all? Intern Stat Rev, 2001, 69 (3): 385~398
14 Domingos P, Pazzani M. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 1997, 29: 103~130
15 Fath MJ, Kolter R. ABC transporters: Bacterial exporters. Microbiol Rev, 1993, 57 (4): 995~1017
16 Finlay BB, Falkow S. Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev, 1997, 61 (2): 136~169
17 Salmond GP, Reeves PJ. Membrane traffic wardens and protein secretion in Gram-negative bacteria. Trends Biochem Sci, 1993, 18 (1): 7~12
18 Van Gijsegem F, Genin S, Boucher C. Conservation of secretion pathways for pathogenicity determinants of plant and animal bacteria. Trends Microbiol, 1993, 1: 175~1801
19 Winans SC, Burns DL, Christie PJ. Adaptation of a conjugal transfer system for the export of pathogenic macromolecules. Trends Microbiol, 1996, 4 (2): 64~68
20 Vasse J, Genin S, Frey P, Boucher C, Brito B. The hrpB and hrpG regulatory genes of Ralstonia solanacearum are required for different stages of the tomato root infection process. Mol Plant Microbe Interact, 2000, 13 (3): 259~267
21 Gentschev I, Dietrich G, Goebel W. The E. coli alpha–hemolysin secretion system and its use in vaccine development. Trends Microbiol, 2002, 10 (1): 39~45
22 Rossier O, Starkenburg SR, Cianciotto NP. Legionella pneumophila type II protein secretion promotes virulence in the A/J mouse model of Legionnaires’ disease pneumonia. Infect Immun, 2004, 72 (1): 310~321
23 Schell MA. Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annu Rev Phytopathol, 2000, 38: 263~292
24 Alfano JR, Collmer A. Type Ⅲ secretion system effector protein: double agents in bacterial disease and plant defense. Annu Rev Phytopathol, 2004, 42: 385~414
25 Yip CK, Kimbrough TG, Felise HB, Vuckovic M, Thomas NA, Pfuetzner RA, Finlay BB, Miller SI, Strynadka NC. Structural characterization of the molecular platform for type III secretion system assembly. Nature, 2005, 435 (7042): 702~707

相似文献/References:

[1]王东,须涛,李令锦,等.一种新的加权功能相似性算法在蛋白质相互作用研究中的应用[J].应用与环境生物学报,2010,16(03):420.[doi:10.3724/SP.J.1145.2010.00420]
 WANG Dong,XU Tao,LI Lingjin,et al.A Novel Weighted Functional Similarity Algorithm Applied to Analyze the Protein-protein Interaction[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):420.[doi:10.3724/SP.J.1145.2010.00420]

备注/Memo

备注/Memo:
国家自然科学基金项目(Nos. 30871321,30771312,30971817)和国家重点基础研究发展计划(“973”计划,No. 2009CB125910)资助
更新日期/Last Update: 2012-02-29