|本期目录/Table of Contents|

[1]余孟好,孙谷畴,赵平.马占相思林冠层水分利用效率的气候调节[J].应用与环境生物学报,2010,16(03):309-316.[doi:10.3724/SP.J.1145.2010.00309]
 YU Menghao,SUN Guchou,ZHAO Ping.Climatic Control of Water Use Efficiency of Acacia mangium Forest Canopy[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):309-316.[doi:10.3724/SP.J.1145.2010.00309]
点击复制

马占相思林冠层水分利用效率的气候调节()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
16卷
期数:
2010年03期
页码:
309-316
栏目:
胁迫抗性生理及分子机制专栏
出版日期:
2010-06-25

文章信息/Info

Title:
Climatic Control of Water Use Efficiency of Acacia mangium Forest Canopy
作者:
余孟好孙谷畴赵平
(1中国科学院华南植物研究所 广州 510650)
(2中国科学院研究生院 北京 100049)
Author(s):
YU Menghao SUN Guchou ZHAO Ping
(1South China Institute of Botany, Chinese Academy of Sciences, Guangzhou 510650, China)
(2Graduate University of Chinese Academy of Sciences, Beijing 100049, China)
关键词:
马占相思林水分利用效率碳同位素比率水汽压亏缺干旱胁迫
Keywords:
Acacia mangium forest water use efficiency carbon isotope ratio vapor pressure deficit drought stress
分类号:
Q945
DOI:
10.3724/SP.J.1145.2010.00309
文献标志码:
A
摘要:
由于受直射光、散射光或受遮阴叶层分布以及一天中光、温和水汽压亏缺变化的剧烈影响,植物冠层的水分利用效率(WUE)较为复杂. 通过测定叶片的碳同位素比率(δ13Cp),估测叶片新固定碳同位素的比率(δ13Cplant)和冠层水平的碳同位素甄别率(⊿canopy),计算华南地区鹤山丘陵地马占相思林冠层WUE. 结果显示:从冬季至夏季,最高气温(Tamax)和水汽压亏缺(Dmax)明显增高;冬季早上和傍晚的δ13Cplant最高,春夏季傍晚有较低的δ13Cplant,秋季的δ13Cplant日变动较小,冬季冠层有较其他季节高的δ13Cplant和较低的⊿canopy. 由春季至冬季,δ13Cplant趋向于增高,而⊿canopy则趋向于下降. 夏季马占相思林冠层平均(±SD)WUE[(2.01±0.38) mmol mol-1]明显低于冬季和春季值[分别为(6.90±0.26)、(5.65±0.14) mmol mol-1],年均WUE为(4.36±2.32) mmol mol-1. 环境变化引起叶片胞间和空气CO2浓度的变化,从而改变⊿canopy和δ13Cplant,造成不同季节冠层WUE的差别. 冠层WUE与水汽压亏缺(D1,kPa)、气温(Ta,℃)和叶片水势(Ψ,MPa)成显著负相关. 利用δ13Cplant计算的WUE与根据Wang和Leuning的Ball-Woodrow-Berry模式求算的WUE契合较好. 结果表明,以新固定碳的稳定同位素比率方法是研究环境胁迫对冠层WUE限制的有效方法. 图8 表3 参30
Abstract:
Plant canopies are dramatically affected by leaves as sunlit fraction receiving direct light and shaded fraction only receiving diffuse light or being shaded and by variation of light, temperature and water vapor deficit in a day. When scaling up from leaves to canopy there are additional complications that affect the measurement of water use efficiency (WUE). The carbon isotope ratio of leaves (δ13Cp) was seasonally measured, and the integrated canopy-level carbon isotope discrimination
(⊿canopy) and the ratio of isotope of newly fixed carbon (δ13Cplant) were estimated for calculating the canopy WUE in an A. mangium plantation in the hilly land of Heshan in South China. A general increase was found in the maximum air temperature (Tamax) , atmosphere saturation deficit (Dmax) and leaf water potential(Ψ, MPa) from winter to summer on the site. The results showed the highest δ13Cplant values occurred in the morning and at the dusk in winter, while the lowest generally appeared at the dusk in spring and summer. No obvious variation of δ13Cplant occurred in autumn. A higher δ13Cplant and a lower ⊿canopy occurred in winter compared with those in other seasons. An increasing δ13Cplant trend and a decreasing ⊿canopy one from spring to autumn were observed. The average (±SD) WUE [(2.01±0.38) mmol mol-1] of the canopy of A. mangium occurred in summer, and it was much lower than that observed in winter and spring [(6.90±0.26) and (5.65±0.14) mmol mol-1]). The difference in canopy WUE in different seasons at this site was primarily due to environment conditions, which would cause the change in integrated ratio of intercellular to ambient CO2 concentration and be consistent with the changes in ⊿canopy and δ13Cplant. There was a strong negative correlation of WUE with air temperature and water vapour pressure deficit (D, kPa), as well as with leaf water potential(Ψ, MPa). An fair agreement between WUE measured using δ13Cplant and that using Ball Woodrow-Berry model following Wang and Leuning (1998) was observed. This result indicated that the stable isotope composition of newly-fixed carbon was a useful canopy-scale tool that would help to study the constrain of environmental stress on canopy WUE . Fig 8, Tab 3, Ref 30

参考文献/References:

1 Boyer JS. Plant productivity and environment. Science, 1982, 218: 443~448
2 Farquhar GD, Ehleringer JR, Hubick KT. Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol & Plant Mol Biol, 1989, 40: 503~537
3 Brooks JR, Flagnagan LB, Buchman N, Buchmann N, Ehleringer JR. Carbon isotope composition of boreal plants: Functional grouping of life forms. Oecologia, 1997, 110: 301~311
4 Farquhar GD, Sharky TD. Stomatal conductance and photosynthesis. Annu Rev Plant Physiol, 1982, 33: 317~345
5 Baldochi D, Falge E, Gu LH, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee XH, Malhi Y, Meyers T, Munger W, Oechel W, Paw UKT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S. FLUX NET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide water vapor, and energy fluxes. Bull Am Meteorol Soc, 2001, 82: 2415~2434
6 IPCC. Climate Change 2007. The Physical Science Basis Contribution of Working Group Ⅰ to the Fourth Assessment Report of Intergovernmental Panel for Climatic Change. New York, USA: Cambridge Press, 2007
7 Zeng XP (曾小平), Zhao P (赵平), Rao XQ (饶兴权). Measurement of leaf index of three plantation and their seasonal changes in Heshan hilly land. J Beijing For university (北京林业大学报), 2008, 30: 33~38
8 Zeng XP (曾小平). Studies on net primary productivity structure and function of tree plantation communities in Heshan hilly-land: [PhD Degree Dissertation]. Beijing, China: The Graduate School of the Chinese Academy of Science, 2007
9 Campbell GS, Norman JM. An Introduction of Environment Biophysics. New York, Berlin, Heidelberg: Springer-Verlag, 1998. 36~51
10 Craig H. Carbon-13 in plants and the relationship between carbon-13 and carbon-14 variations in nature. J Geol, 1953, 62: 115~149
11 Chen BZ, Chen JM. Seasonal and international variability of carbon isotope discrimination at the canopy level in response environmental factor in a boreal forest ecosystem. Plant Cell Environ, 2007, 30: 1223~1239
12 Chen JM, Liu J, Cihlar J, Guolden ML. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecol Modell, 1999, 124: 99~119
13 Cooper PI. The absorption of solar radiation in solar stills. Sol Energy, 1959, 12: 333~346
14 Pearcy RW. Radiation and light measurements. In: Pearcy RW, Ehleringer JR. Mooney HA, Rundel PW. Plant Physiological Ecology, Field methods and instrumentation. London, New York: Chapman and Hall, 1989
15 Cai T, Flanagan LB, Jassal RS, Black A. Modeling environmental controls on ecosystem photosynthesis and the carbon isotope composition of ecosystem-respired CO2 in a coastal Douglas-fir forest. Plant cell & Environ, 2008, 31: 435~453
16 Schymanski S, Roderic ML, Sivapalan M, Hutley LB, Beringer J. A test of the optimality approach to modeling canopy properties and CO2 uptake by natural vegetation. Plant Cell & Environment, 2007, 30: 1586~1598
17 Wang YP, Leurung R. A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I: Model description and comparison with multi-layered model. Agric & For Meteorol, 1998, 91: 81~111
18 Zhao P (赵平), Liu H (刘慧), Sun GC (孙谷畴). Inter species variation in stomatal sensitivity to vapor pressure deficit in four plant species. Acta Sci Nat Univ Sunyatsen (中山大学学报自然科学版), 2007, 46: 63~68
19 Bonan GB. A biophysical surface –energy budget analysis of soil-temperature in boreal forest of interior Alaska. Water Resourc Res, 1991, 27: 167~781
20 Bai XF (柏新富), Zhu JJ (朱建军), Zhao AF (赵爱芬), Su PX (苏培玺), Bu QM (卜庆梅), Zhao X (赵雪). Comparison of physiological adaptabilities of several desert plants to drying stress. Chin J Appl Environ Bol (应用与环境生物学报), 2008, 14 (6): 763~768
21 Li XY (李向义), Lin LS (林丽莎), Zhang XM (张希明), Zeng FJ (曾凡江). Charictaristics of water status in Populus euphratica outside the Oases in the Taklamalcon Desert. Chin J Appl Environ Bol (应用与环境生物学报), 2007, 13 (6): 763~766
22 Keeling CD. The concentration and isotopic abundance of atmospheric carbon dioxide in rural areas. Geochim et Cosmochim Acta, 1958, 13: 322~334
23 Hemming D, Yakir D, Ambus P, Aurela M, Bessons C, Black K, Buchmann N, Burlett R, Cescatti A, Clement R, Gross P, Granier A, Grünwald T, Havrankova K, Janous D, Janssens IA, knohl A, Östuer BK, Kowalski A, Laurila T, Mata C, Marcolla B, Matteucci G, Moncrieff J, Moors EJ, Osborne B, Perera JS, Pihlatie M, Pihlatie M, Pilegaard K, Ponti F, Rosova Z, Rossi F, Scartazza A, Vesala T. Pan-European delta C-13 values of air and organic mater from forest ecosystems. Global Change Biosphere, 2005, 11: 1065~1093
24 Hymus GJ, Maseyk K, Valentini R. Yakir D Large daily variation in 13C-enrichment of leaf-respired CO2 in two Quercus forest canopies. New Phytologist, 2005, 167: 337~384
25 Ponton S, Flanagan LB, Alstaed KP, Johnson B, Morgenstern K, Kljun N, Black TA, Barr A. Comparison of ecosystem water use efficiency among Douglas-fir forest, aspen and grassland using eddy covariance and isotope techniques. Global Change Biol, 2006, 12: 294~310
26 Högberg P, Johannisson C, Hällgren JE. Studies of 13C in the foliage reveal interaction between nutrients and water in fertilization experiments. Plant & Soil, 1993, 152: 207~214
27 Sage RF, Kubian DS. The temperature response of C3 and C4 photosynthetic products and ecosystem respiratory CO2 and their response to seasonal climate variability. Oecologia, 2007, 140: 340~351
28 Pearcy RW, Muracka H, Vallaclares F. Crown architecture in sun and shade environments: Assessing functional and trade-offs with a three dimensional simulation model. New Phytologist, 2005, 166: 791~800
29 Scartazza A, Mata C, Matteucci G, Yakir D, Moscatello S, Brugnoli E. Comparison of δ13c of photosynthetic products and ecosystem respiration CO2 and their response to seasonal climate variability. Oecologia, 2004, 140: 340~351
30 Monclus R, Dreyer E, Villar M, Delmotte FM, Delay D, Petit JM, Barbaroux C, Thiec DL, Bréchet C, Brignolas F. Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides & Populus nigra. New Phytologist, 2006, 169: 765~777

相似文献/References:

[1]柏新富,朱建军,赵爱芬,等.几种荒漠植物对干旱过程的生理适应性比较[J].应用与环境生物学报,2008,14(06):763.[doi:10.3724/SP.J.1145.2008.00763]
 BAI Xinfu**,ZHU Jianjun,ZHAO Aifen,et al.Comparison of Physiological Adaptabilities of Several Dersert Plants to Drying Stress[J].Chinese Journal of Applied & Environmental Biology,2008,14(03):763.[doi:10.3724/SP.J.1145.2008.00763]
[2]马守臣,徐炳成,李凤民,等.根修剪对冬小麦根系效率、水分利用及产量的影响[J].应用与环境生物学报,2009,15(05):606.[doi:10.3724/SP.J.1145.2009.00606]
 MA Shouchen,XU Bingcheng,LI Fengmin & HUANG Zhanbin.Effect of Root Pruning on Root Efficiency, Water Use and Yield of Winter Wheat[J].Chinese Journal of Applied & Environmental Biology,2009,15(03):606.[doi:10.3724/SP.J.1145.2009.00606]
[3]马守臣,徐炳成,王和洲,等.根系冗余对小麦籽粒产量和水分利用效率的影响[J].应用与环境生物学报,2010,16(03):305.[doi:10.3724/SP.J.1145.2010.00305]
 MA Shouchen,XU Bingcheng,WANG Hezhou,et al.Effect of Root Redundancy on Grain Yield and Water Use Efficiency of Winter Wheat[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):305.[doi:10.3724/SP.J.1145.2010.00305]
[4]焦娟玉,刘裕,尹春英,等.土壤水分状况对麻疯树幼苗光合作用、超微结构和生理特征的影响[J].应用与环境生物学报,2010,16(04):483.[doi:10.3724/SP.J.1145.2010.00483]
 JIAO Juanyu,LIU Yu,YIN Chunying,et al.Effects of Soil Water Condition on Photosynthesis, Ultrastructure and Physiological Characteristics of Jatropha curcas L. Seedlings[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):483.[doi:10.3724/SP.J.1145.2010.00483]
[5]李善家,张有福,陈拓.西北地区油松叶片稳定碳同位素特征与生理指标的关系[J].应用与环境生物学报,2010,16(05):603.[doi:10.3724/SP.J.1145.2010.00603]
 LI Shanjia,ZHANG Youfu,CHEN Tuo.Correlations Between Foliar Stable Carbon Isotope Composition and Physiological Parameters of Pinus tabulaeformis Carr. in Northwestern China[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):603.[doi:10.3724/SP.J.1145.2010.00603]
[6]袁颖红,樊后保,吴建平,等.不同年龄人工林尾巨桉(Eucalyptus urophylla × E. grandis)叶片光合特性及水分利用效率[J].应用与环境生物学报,2016,22(01):58.[doi:10.3724/SP.J.1145.2015.06020]
 YUAN Yinghong,FAN Houbao**,WU Jianping,et al.The photosynthesis characteristics and water use efficiency of Eucalyptus urophylla × E. grandis plantations of different ages[J].Chinese Journal of Applied & Environmental Biology,2016,22(03):58.[doi:10.3724/SP.J.1145.2015.06020]

备注/Memo

备注/Memo:
国家自然科学基金项目(Nos. 30770328, 30871998)资助 Supported by National Natural Science Foundation of China (No. 30770328, 30871998)
更新日期/Last Update: 2010-06-23