|本期目录/Table of Contents|

[1]胡吉军,郭维强,贾志国,等.混合菌群产氢特性研究[J].应用与环境生物学报,2009,15(01):115-119.[doi:10.3724/SP.J.1145.2009.00115]
 HU Jijun,GUO Weiqiang,JIA Zhiguo,et al.Characterization of H2-producing Bacteria in Mixed Cultures[J].Chinese Journal of Applied & Environmental Biology,2009,15(01):115-119.[doi:10.3724/SP.J.1145.2009.00115]
点击复制

混合菌群产氢特性研究()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
15卷
期数:
2009年01期
页码:
115-119
栏目:
研究论文
出版日期:
2009-02-25

文章信息/Info

Title:
Characterization of H2-producing Bacteria in Mixed Cultures
作者:
胡吉军郭维强贾志国付宁张杰陶勇高平李大平王镧
1四川大学生命科学学院 成都 610064
2中国科学院成都生物研究所应用与环境微生物研究中心 成都 610041
Author(s):
HU Jijun GUO Weiqiang JIA Zhiguo FU Ning ZHANG Jie TAO Yong GAO Ping LI Daping WANG Lan
1School of Life Sciences, Sichuan University, Chengdu 610064, China
2Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
关键词:
混合菌群微氧产氢乙醇型发酵甘露醇克氏杆菌
Keywords:
bacterial flora microaerobic H2 production ethanol-type fermentation mannitol Klebsiella sp.
分类号:
TK91 : TQ920.1
DOI:
10.3724/SP.J.1145.2009.00115
文献标志码:
A
摘要:
对产氢菌株进行筛选,得到一组可以在微氧条件下高效产氢的微生物菌群. 此菌群在0~15% O2浓度下都可以
产氢,具有较高的耐氧产氢特性. 该混合菌群可利用甘露醇、葡萄糖、蔗糖、乳糖、淀粉为底物产氢,其中甘露醇为最
适底物. 最适产氢温度、pH值、初始氧气浓度分别为33 ℃、7.0、2.72%. 在此条件下,以甘露醇为碳源(5.0 g/L),产氢效率
可达到324.18 mL (H2)/g(甘露醇). 对该产氢体系发酵末端产物的液相分析显示乙醇占76%~93%,表明该产氢体系为乙
醇型发酵. 通过PCR-DGGE方法进行菌群分析,发现不同初始氧浓度下菌群分布有一定差异,但克氏杆菌在各种氧浓
度下的混合菌群中都占明显优势,是主要的产氢菌. 图8 表1 参25
Abstract:
A H2-producing bacterial flora was isolated from active sludge, and they could release H2 effectively under
microaerobic conditions by fermentation cultures. The mixed bacteria were highly resistant to oxygen inhibition and could
produce H2 under 0~15% concentration of O2. The mixed bacteria also could utilize mannitol, glucose, sucrose, lactose
and starch as substrates to produce H2, and mannitol was found the optimum carbon source. Their optimal fermentation
temperature, initial pH and initial oxygen concentration were 33 °C, 7.0 and 2.72%, respectively. H2-prudtion rate could reach 324.18 mL (H2)/g (mannitol) (5.0 g/L) under the above conditions. The percent of ethanol in the end product was from 76% to 93%, indicating that the fermentation was mainly of ethanol type. In addition, the denaturing gradient gel electrophoresis (DGGE) analysis showed that the diversity of the microbial communities differed with the changing of initial oxygen concentration (IOC), but Klebsiella sp. was dominant in all experiments at different IOC, and it was the major H2-producing bacterium. Fig 8, Tab 1, Ref 25

参考文献/References:

1 Wang YN (王亚楠), Fu XM (傅秀梅), Liu HY (刘海燕). Recent
progress and trend in biological production of hydrogen. Chin J Appl
Environ Biol (应用与环境生物学报), 2007, 13 (6): 895~900
2 Henfer RA. The age of enegry gases. Int J Hydrogen Enegry, 2002, 27:
l~9
3 Debabrata D, Veziroglu T N. Hydrogen production by biological
processes: A survey of literature. Int J Hydrogen Energy, 2001, 26: 13~28
4 Matsunaga T, Hatano T, Yamada A, Matsumoto M. Microaerobic
hydrogen production by photosynthetic bacteria in a double-phase
photobioreactor. Biotechnol & Bioengin, 2000, 68 (6): 647~651
5 Benemann JR. Photosynthetic apparatus organization and function
in the wild type and a chlorophyll b -less mutant of Chlamydomonas
reinhardtii. Dependence on carbon source. J Appl Phycol, 2000, 12 (325):
291~300
6 Woodward J, Orr M, Cordray K, Greenbaum E. Enzymatic productiio of
biohydrogen. Nature, 2000, 405 (6790): 1014~1015
7 Michael WWA, Edward IS. Biological hydrogen production: Not so
elementary. Science, 1998, 282: 1842~1843
8 Kumar N, Das D. Enhancement of hydrogen production by Enterobacter
cloacae IIT-BT08. Proc Biochem, 2000, 35: 589~593
9 Levin DB, Pitt L, Love M. Biohydrogen production: Prospects and
limitations to practical application. Int J Hydrogen Enery, 2004, 29 (2):
173~185
10 Shireen Meher Kotay, Debabrata Das. Microbial hydrogen production
with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage
sludge. Bioresour Technol, 2007, 98: 1183~1190
11 Kalogo Y, Bagley DM.. Fermentative hydrogen gas production using
biosolids pellets as the inoculum source. Bioresour Technol, 2008, 99:
540~546
12 Xu LY (许丽英), Ren NQ (任南琪), Wang XZ (王兴祖), Li YF (李永锋),
Zahng Y (张颖), Xu H (徐慧), Chen GX (陈冠雄). Nitrogen nutrient
and metabolic characteristics of hydrogen-producing novel species -
Ethanoligenens harbinese B49. Chin J Appl Environ Biol (应用与环境
生物学报), 2007, 13 (2): 265~269
13 Lin CY, Lay CH. Carbon/nitrogen-ratio effect on fermentative hydrogen
production by mixed microflora Int J Hydrogen Energy, 2004, 29: 41~45
14 Mohan SV, Babu VL, Sarma PN. Effect of various pretreatment methods
on anaerobic mixed microf lora to enhance biohydrogen production
utilizing dairy wastewater as substrate. Bioresour Technol, 2007, 29:
1373~1379
15 Zhang XQ (张晓卿), Li M (李媚), Lan LH (蓝丽红), Xie T (谢涛), Liao
AP (廖安平). 发酵液中甘露醇测定研究. Chin J Anal Lab (分析试验
室), 2005, 24 (3): 61~64
16 Cebron A, Coci M, Garnier J, Laanbroek HJ. Denaturing gradient gel
electrophoretic analysis of ammonia-oxidizing bacterial community
structure in the lower Seine River: Impact of Paris wastewater effluents.
Appl & Environ Microbiol, 2004, 70: 6726~6737
17 Happy RP, Roseboom W, Pierik AJ. Biological activation of hydrogen.
Nature, 1997, 385: 126~128
18 Van der Zwaan JW, Coremans JMCC, Bouwens ECM, Albracht
SPJ. Effection of 17 O2 and 13 CO on the EPR spectra of nickel in
hydrogenase from Chromatium vinosum. Biochim & Biophysica Acta,
1990, 1041: 101~110
19 L Minna, H Jinli, W Xiaobin, X Huijuan, C Jinzao, L Chuannan,
Z Fengzhang, X Liangshu. Isolation and characterization of a high
H2-producing strain Klebsiella oxytoca HP1 from a hot spring. Res
Microbiol, 2005, 156: 76~81
20 Ren NQ, Chua H, Chan SY, Tsang YF, Wang YL, Sin N. Assessing
optimal fermentation type for bio-hydrogen production in continuous-flow
acidogenic reactors. Bioresour Technol, 2007, 98: 1774~1780
21 Selvam GS, Raja E. Biochemistry. School of Biology, Madurai Kamaraj
University, Palkalai Nagar, Maduari 625021, India, 2007
22 Flanagan JL, Brodie EL, Weng L, Lynch SV, Garcia O. Loss of bacterial
diversity during antibiotic treatment of intubated patients colonized
with Pseudomonas aeruginosa. J Clin Microbiol, 2007, 45 (6): 1954
~1962
23 Purohit HJ, Kapley A. Environmental Genomics Unit. National
Environmental Engineering Research Institute (NEERI), Nehru Marg,
Nagpur, Maharashtra 440020, India, 2005
24 Drancourt M, Bollet C, Carta A, Rousselier P. Phylogenetic analyses
of Klebsiella species delineate Klebsiella and Raoultella gen. Int J Syst
Evol Microbiol, 2001, 51 (3): 925~932
25 Eaton RW, Karns JS. Cloning and comparison of the DNA encoding
ammelide aminohydrolase and cyanuric acid amidohydrolase from
threes-triazine-degrading bacterialstrains. J Bacteriol, 1991, 173 (3):
1363~1366

相似文献/References:

[1]张廷滔,张礼霞,高平,等.混合菌群生物燃料电池的产电机理与特性[J].应用与环境生物学报,2012,18(03):465.[doi:10.3724/SP.J.1145.2012.00465]
 ZHANG Tingtao,ZHANG Lixia,GAO Ping,et al.Mechanism and Characteristics of Electricity Generation in Microbial Fuel Cells Catalyzed by Mixed Culture[J].Chinese Journal of Applied & Environmental Biology,2012,18(01):465.[doi:10.3724/SP.J.1145.2012.00465]
[2]张庆华,陈国涛,冯琳琳,等.混合菌群对偶氮染料的脱色降解研究进展[J].应用与环境生物学报,2020,26(02):469.[doi:10.19675/j.cnki.1006-687x.2019.06009]
 ZHANG Qinghua,CHEN Guotao,FENG Linlin,et al.Research progress on microbial decolorization and degradation of azo dyes[J].Chinese Journal of Applied & Environmental Biology,2020,26(01):469.[doi:10.19675/j.cnki.1006-687x.2019.06009]

备注/Memo

备注/Memo:
国家“863”计划项目(No. 2006AA05Z103)资助
更新日期/Last Update: 2009-03-05