|本期目录/Table of Contents|

[1]郜瑞莹,王建龙.酿酒酵母生物吸附Cu2+的动力学及吸附平衡研究[J].应用与环境生物学报,2007,13(06):848-852.
 GAO Ruiying,et al..Kinetics and Equilibrium of Cu2+ Biosorption by Dried Biomass of Saccharomyces cerevisia[J].Chinese Journal of Applied & Environmental Biology,2007,13(06):848-852.
点击复制

酿酒酵母生物吸附Cu2+的动力学及吸附平衡研究()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
13卷
期数:
2007年06期
页码:
848-852
栏目:
综述
出版日期:
2007-12-25

文章信息/Info

Title:
Kinetics and Equilibrium of Cu2+ Biosorption by Dried Biomass of Saccharomyces cerevisia
作者:
郜瑞莹王建龙
(1清华大学核能与新能源技术研究院北京100084) (2广东省电力设计研究院广州510600)
Author(s):
GAO Ruiying et al.
(1Laboratory of Environmental Engineering, INET, Tsinghua University, Beijing 100084, China) (2Guangdong Electric Power Design Institute, Guangzhou 510600, China)
关键词:
关键词Cu2+酿酒酵母重金属生物吸附动力学
Keywords:
Keywords Cu2+ Saccharomyces cerevisia heavy metal biosorption kinetics
摘要:
摘要研究了重金属离子Cu2+在酿酒酵母上的生物吸附特性,内容包括生物吸附动力学、吸附等温线以及pH对生物吸附的影响.生物吸附动力学结果表明,当Cu2+初始浓度为716 mg/L时,Cu2+在酿酒酵母上的生物吸附过程可以分为两个阶段,第一阶段为物理吸附,在10 min内达到平衡,此后,随着时间的延长,有微量脱附现象发生. Cu2+在酵母上的吸附过程可以很好地用准二级动力学方程来描述 (R2=0998 4),动力学参数k2为765×10-3 g mg-1 min-1, qe为915 mg/g.吸附等温线结果表明, Cu2+在酿酒酵母上的生物吸附可以用Langmuir和Freundlich方程来描述,最大吸附量qmax为102 mg/g. pH为50时Cu2+在酿酒酵母上的吸附量最大.酿酒酵母可用于处理低浓度含Cu2+的废水.图8表2参37
Abstract:
Abstract Biosorption is an alternative technology for treating heavy metal contaminant. The characteristics of Cu2+ biosorption by Saccharomyces cerevisia were investigated, including the biosorption kinetics, equilibrium isotherm and pH effect. The experiment results showed that when the initial Cu2+ concentration was 716 mg/L, the process of Cu2+ biosorption by the dry biomass of S. cerevisia could be divided into two stages. The first stage was physical sorption and reached equilibrium very quickly (within 10 minutes), and then desorption took place. The biosorption kinetics could be well described by the pseudo secondorder equation (R2=0.998 4). The kinetic parameters k2 and qe were 765×10-3 and 915 mg/g, respectively. The equilibrium isotherm date could be fitted to the Langmuir and Freundlich models, with the largest biosorptive capacity of 10 2 mg/g. The optimum pH for biosorption was 50. S. cerevisia can be applied in the treatment of the wastewater with low concentration of Cu2+. Fig 8, Tab 2, Ref 37

相似文献/References:

[1]李岩,王海燕,张义正.甘薯蔗糖转运蛋白IbSUT1x在酵母细胞中的定位[J].应用与环境生物学报,2010,16(06):798.[doi:10.3724/SP.J.1145.2010.00798]
 LI Yan,WANG Haiyan,ZHANG Yizheng.Localization of IbSUT1x Protein from Ipomoea batatas (L.) Lam in Yeast Cells[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):798.[doi:10.3724/SP.J.1145.2010.00798]
[2]李宇浩,靳艳玲,龙飞,等.降粘酶在新鲜木薯发酵生产高浓度乙醇中的应用[J].应用与环境生物学报,2013,19(03):501.[doi:10.3724/SP.J.1145.2013.00501]
 LI Yuhao,JIN Yanling,LONG Fei,et al.Using Viscosity Reducing Enzyme as Annexing Agent in the Very High Gravity Ethanol Fermentation with Fresh Cassava[J].Chinese Journal of Applied & Environmental Biology,2013,19(06):501.[doi:10.3724/SP.J.1145.2013.00501]
[3]柯崇榕,吴毕莎,邵庆伟,等.酿酒酵母PDC1基因过表达菌株的构建[J].应用与环境生物学报,2013,19(04):704.[doi:10.3724/SP.J.1145.2013.00704]
 KE Chongrong,WU Bisha,SHAO Qingwei,et al.Construction of Saccharomyces cescerevisiae Mutant with Overexpression of PDC1 Gene[J].Chinese Journal of Applied & Environmental Biology,2013,19(06):704.[doi:10.3724/SP.J.1145.2013.00704]
[4]盛冠一,诸葛斌,宗红,等.高灵敏度铜抗性酿酒酵母表达系统的构建与应用[J].应用与环境生物学报,2014,20(03):357.[doi:10.3724/SP.J.1145.2014.12033]
 SHENG Guanyi,ZHUGE Bin,ZONG Hong,et al.Construction and application of the high sensitivity expression system of copper-resistant Saccharomyces cerevisiae[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):357.[doi:10.3724/SP.J.1145.2014.12033]
[5]周利,汤岳琴,孙照勇,等.基于连续发酵驯化的高耐盐性酿酒酵母的育种[J].应用与环境生物学报,2014,20(03):360.[doi:10.3724/SP.J.1145.2014.11032]
 ZHOU Li,TANG Yueqin,SUN Zhaoyong,et al.Breeding of high salt-tolerant Saccharomyces cerevisiae strains based on continuous ethanol fermentation[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):360.[doi:10.3724/SP.J.1145.2014.11032]
[6]张明明 万青青 张克俞 熊 亮 白凤武,赵心清**.过表达分支酸歧化酶编码基因ARO7对酿酒酵母抑制物耐受性的影响*[J].应用与环境生物学报,2016,22(02):201.[doi:10.3724/SP.J.1145.2015.09013]
 ZHANG Mingming,WAN Qingqing,ZHANG Keyu,et al.Effect of overexpression of chorismate mutase encoding gene ARO7 on theinhibitor tolerance of Saccharomyces cerevisiae[J].Chinese Journal of Applied & Environmental Biology,2016,22(06):201.[doi:10.3724/SP.J.1145.2015.09013]
[7]谷鸿宇,诸葛斌,方慧英,等.渗透压调控启动子表达木糖醇脱氢酶基因XYL2对重组酿酒酵母木糖代谢的影响[J].应用与环境生物学报,2016,22(06):1122.[doi:10.3724/SP.J.1145.2016.01035]
 GU Hongyu,ZHUGE Bin,et al.Effect of controlled overexpression of XYL2 coding for xyltiol dehydrogenase by osmo-responsive promoters on xylose metabolism in Saccharomyces cerevisiae[J].Chinese Journal of Applied & Environmental Biology,2016,22(06):1122.[doi:10.3724/SP.J.1145.2016.01035]
[8]张影,苟敏,孙照勇,等.混合糖发酵条件下甲酸抑制木糖发酵的机制[J].应用与环境生物学报,2017,23(06):990.[doi:10.3724/SP.J.1145.2017.02011]
 ZHANG Ying,GOU Min,SUN Zhaoyong,et al.The inhibitory mechanism of action of formic acid on xylose fermentation during mixed sugar fermentation[J].Chinese Journal of Applied & Environmental Biology,2017,23(06):990.[doi:10.3724/SP.J.1145.2017.02011]
[9]缪晡,苟敏,陈栋,等.不同糖发酵条件下酿酒酵母组成型启动子和诱导型启动子评价[J].应用与环境生物学报,2019,25(05):1185.[doi:10.19675/j.cnki.1006-687x.2019.07015]
 MIAO Pu,GOU Min,CHEN Dong & TANG Yueqin,et al.Genome-wide evaluation of constitutive and inducible promotors in Saccharomyces cerevisiae utilizing different carbon sources[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):1185.[doi:10.19675/j.cnki.1006-687x.2019.07015]
[10]缪晡 苟敏 陈栋 汤岳琴**.不同糖发酵条件下酿酒酵母组成型启动子和诱导型启动子评价*[J].应用与环境生物学报,2020,26(03):1.[doi:10.19675/j.cnki.1006-687x.2019.07015]
 MIAO Pu,Gou Min,CHEN Dong,et al.Genome-wide evaluation of constitutive and regulated promoters in Saccharomyces cerevisiae in different carbon sources*[J].Chinese Journal of Applied & Environmental Biology,2020,26(06):1.[doi:10.19675/j.cnki.1006-687x.2019.07015]

更新日期/Last Update: 2008-01-17